[2c47b73] | 1 | /** |
---|
| 2 | * @file sz_double.c |
---|
| 3 | * @author Sheng Di and Dingwen Tao |
---|
| 4 | * @date Aug, 2016 |
---|
| 5 | * @brief SZ_Init, Compression and Decompression functions |
---|
| 6 | * (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory. |
---|
| 7 | * See COPYRIGHT in top-level directory. |
---|
| 8 | */ |
---|
| 9 | |
---|
| 10 | |
---|
| 11 | #include <stdio.h> |
---|
| 12 | #include <stdlib.h> |
---|
[e6aa0eb] | 13 | #include <stddef.h> |
---|
[2c47b73] | 14 | #include <string.h> |
---|
| 15 | #include <unistd.h> |
---|
| 16 | #include <math.h> |
---|
| 17 | #include "sz.h" |
---|
| 18 | #include "CompressElement.h" |
---|
| 19 | #include "DynamicByteArray.h" |
---|
| 20 | #include "DynamicIntArray.h" |
---|
| 21 | #include "TightDataPointStorageD.h" |
---|
| 22 | #include "sz_double.h" |
---|
| 23 | #include "sz_double_pwr.h" |
---|
| 24 | #include "szd_double.h" |
---|
| 25 | #include "szd_double_pwr.h" |
---|
| 26 | #include "zlib.h" |
---|
| 27 | #include "rw.h" |
---|
| 28 | #include "sz_double_ts.h" |
---|
[9ee2ce3] | 29 | #include "utility.h" |
---|
[2c47b73] | 30 | |
---|
| 31 | unsigned char* SZ_skip_compress_double(double* data, size_t dataLength, size_t* outSize) |
---|
| 32 | { |
---|
| 33 | *outSize = dataLength*sizeof(double); |
---|
| 34 | unsigned char* out = (unsigned char*)malloc(dataLength*sizeof(double)); |
---|
| 35 | memcpy(out, data, dataLength*sizeof(double)); |
---|
| 36 | return out; |
---|
| 37 | } |
---|
| 38 | |
---|
| 39 | void computeReqLength_double(double realPrecision, short radExpo, int* reqLength, double* medianValue) |
---|
| 40 | { |
---|
| 41 | short reqExpo = getPrecisionReqLength_double(realPrecision); |
---|
| 42 | *reqLength = 12+radExpo - reqExpo; //radExpo-reqExpo == reqMantiLength |
---|
| 43 | if(*reqLength<12) |
---|
| 44 | *reqLength = 12; |
---|
| 45 | if(*reqLength>64) |
---|
| 46 | { |
---|
| 47 | *reqLength = 64; |
---|
| 48 | *medianValue = 0; |
---|
| 49 | } |
---|
| 50 | } |
---|
| 51 | |
---|
| 52 | unsigned int optimize_intervals_double_1D(double *oriData, size_t dataLength, double realPrecision) |
---|
| 53 | { |
---|
| 54 | size_t i = 0, radiusIndex; |
---|
| 55 | double pred_value = 0, pred_err; |
---|
| 56 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 57 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 58 | size_t totalSampleSize = dataLength/confparams_cpr->sampleDistance; |
---|
| 59 | for(i=2;i<dataLength;i++) |
---|
| 60 | { |
---|
| 61 | if(i%confparams_cpr->sampleDistance==0) |
---|
| 62 | { |
---|
| 63 | //pred_value = 2*oriData[i-1] - oriData[i-2]; |
---|
| 64 | pred_value = oriData[i-1]; |
---|
| 65 | pred_err = fabs(pred_value - oriData[i]); |
---|
| 66 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 67 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 68 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 69 | intervals[radiusIndex]++; |
---|
| 70 | } |
---|
| 71 | } |
---|
| 72 | //compute the appropriate number |
---|
| 73 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 74 | size_t sum = 0; |
---|
| 75 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 76 | { |
---|
| 77 | sum += intervals[i]; |
---|
| 78 | if(sum>targetCount) |
---|
| 79 | break; |
---|
| 80 | } |
---|
| 81 | |
---|
| 82 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 83 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 84 | unsigned int accIntervals = 2*(i+1); |
---|
| 85 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 86 | |
---|
| 87 | if(powerOf2<32) |
---|
| 88 | powerOf2 = 32; |
---|
| 89 | |
---|
| 90 | free(intervals); |
---|
| 91 | //printf("accIntervals=%d, powerOf2=%d\n", accIntervals, powerOf2); |
---|
| 92 | return powerOf2; |
---|
| 93 | } |
---|
| 94 | |
---|
| 95 | unsigned int optimize_intervals_double_2D(double *oriData, size_t r1, size_t r2, double realPrecision) |
---|
| 96 | { |
---|
| 97 | size_t i,j, index; |
---|
| 98 | size_t radiusIndex; |
---|
| 99 | double pred_value = 0, pred_err; |
---|
| 100 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 101 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 102 | size_t totalSampleSize = (r1-1)*(r2-1)/confparams_cpr->sampleDistance; |
---|
| 103 | for(i=1;i<r1;i++) |
---|
| 104 | { |
---|
| 105 | for(j=1;j<r2;j++) |
---|
| 106 | { |
---|
| 107 | if((i+j)%confparams_cpr->sampleDistance==0) |
---|
| 108 | { |
---|
| 109 | index = i*r2+j; |
---|
| 110 | pred_value = oriData[index-1] + oriData[index-r2] - oriData[index-r2-1]; |
---|
| 111 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 112 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 113 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 114 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 115 | intervals[radiusIndex]++; |
---|
| 116 | } |
---|
| 117 | } |
---|
| 118 | } |
---|
| 119 | //compute the appropriate number |
---|
| 120 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 121 | size_t sum = 0; |
---|
| 122 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 123 | { |
---|
| 124 | sum += intervals[i]; |
---|
| 125 | if(sum>targetCount) |
---|
| 126 | break; |
---|
| 127 | } |
---|
| 128 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 129 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 130 | unsigned int accIntervals = 2*(i+1); |
---|
| 131 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 132 | //printf("confparams_cpr->maxRangeRadius = %d, accIntervals=%d, powerOf2=%d\n", confparams_cpr->maxRangeRadius, accIntervals, powerOf2); |
---|
| 133 | |
---|
| 134 | if(powerOf2<32) |
---|
| 135 | powerOf2 = 32; |
---|
| 136 | |
---|
| 137 | free(intervals); |
---|
| 138 | return powerOf2; |
---|
| 139 | } |
---|
| 140 | |
---|
| 141 | unsigned int optimize_intervals_double_3D(double *oriData, size_t r1, size_t r2, size_t r3, double realPrecision) |
---|
| 142 | { |
---|
| 143 | size_t i,j,k, index; |
---|
| 144 | size_t radiusIndex; |
---|
| 145 | size_t r23=r2*r3; |
---|
| 146 | double pred_value = 0, pred_err; |
---|
| 147 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 148 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 149 | size_t totalSampleSize = (r1-1)*(r2-1)*(r3-1)/confparams_cpr->sampleDistance; |
---|
| 150 | for(i=1;i<r1;i++) |
---|
| 151 | { |
---|
| 152 | for(j=1;j<r2;j++) |
---|
| 153 | { |
---|
| 154 | for(k=1;k<r3;k++) |
---|
| 155 | { |
---|
| 156 | if((i+j+k)%confparams_cpr->sampleDistance==0) |
---|
| 157 | { |
---|
| 158 | index = i*r23+j*r3+k; |
---|
| 159 | pred_value = oriData[index-1] + oriData[index-r3] + oriData[index-r23] |
---|
| 160 | - oriData[index-1-r23] - oriData[index-r3-1] - oriData[index-r3-r23] + oriData[index-r3-r23-1]; |
---|
| 161 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 162 | radiusIndex = (pred_err/realPrecision+1)/2; |
---|
| 163 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 164 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 165 | intervals[radiusIndex]++; |
---|
| 166 | } |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | } |
---|
| 170 | } |
---|
| 171 | //compute the appropriate number |
---|
| 172 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 173 | size_t sum = 0; |
---|
| 174 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 175 | { |
---|
| 176 | sum += intervals[i]; |
---|
| 177 | if(sum>targetCount) |
---|
| 178 | break; |
---|
| 179 | } |
---|
| 180 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 181 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 182 | |
---|
| 183 | unsigned int accIntervals = 2*(i+1); |
---|
| 184 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 185 | |
---|
| 186 | if(powerOf2<32) |
---|
| 187 | powerOf2 = 32; |
---|
| 188 | |
---|
| 189 | free(intervals); |
---|
| 190 | //printf("confparams_cpr->maxRangeRadius = %d, accIntervals=%d, powerOf2=%d\n", confparams_cpr->maxRangeRadius, accIntervals, powerOf2); |
---|
| 191 | return powerOf2; |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | unsigned int optimize_intervals_double_4D(double *oriData, size_t r1, size_t r2, size_t r3, size_t r4, double realPrecision) |
---|
| 195 | { |
---|
| 196 | size_t i,j,k,l, index; |
---|
| 197 | size_t radiusIndex; |
---|
| 198 | size_t r234=r2*r3*r4; |
---|
| 199 | size_t r34=r3*r4; |
---|
| 200 | double pred_value = 0, pred_err; |
---|
| 201 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 202 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 203 | size_t totalSampleSize = (r1-1)*(r2-1)*(r3-1)*(r4-1)/confparams_cpr->sampleDistance; |
---|
| 204 | for(i=1;i<r1;i++) |
---|
| 205 | { |
---|
| 206 | for(j=1;j<r2;j++) |
---|
| 207 | { |
---|
| 208 | for(k=1;k<r3;k++) |
---|
| 209 | { |
---|
| 210 | for (l=1;l<r4;l++) |
---|
| 211 | { |
---|
| 212 | if((i+j+k+l)%confparams_cpr->sampleDistance==0) |
---|
| 213 | { |
---|
| 214 | index = i*r234+j*r34+k*r4+l; |
---|
| 215 | pred_value = oriData[index-1] + oriData[index-r3] + oriData[index-r34] |
---|
| 216 | - oriData[index-1-r34] - oriData[index-r4-1] - oriData[index-r4-r34] + oriData[index-r4-r34-1]; |
---|
| 217 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 218 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 219 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 220 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 221 | intervals[radiusIndex]++; |
---|
| 222 | } |
---|
| 223 | } |
---|
| 224 | } |
---|
| 225 | } |
---|
| 226 | } |
---|
| 227 | //compute the appropriate number |
---|
| 228 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 229 | size_t sum = 0; |
---|
| 230 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 231 | { |
---|
| 232 | sum += intervals[i]; |
---|
| 233 | if(sum>targetCount) |
---|
| 234 | break; |
---|
| 235 | } |
---|
| 236 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 237 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 238 | |
---|
| 239 | unsigned int accIntervals = 2*(i+1); |
---|
| 240 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 241 | |
---|
| 242 | if(powerOf2<32) |
---|
| 243 | powerOf2 = 32; |
---|
| 244 | |
---|
| 245 | free(intervals); |
---|
| 246 | return powerOf2; |
---|
| 247 | } |
---|
| 248 | |
---|
| 249 | TightDataPointStorageD* SZ_compress_double_1D_MDQ(double *oriData, |
---|
| 250 | size_t dataLength, double realPrecision, double valueRangeSize, double medianValue_d) |
---|
| 251 | { |
---|
| 252 | #ifdef HAVE_TIMECMPR |
---|
| 253 | double* decData = NULL; |
---|
| 254 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 255 | decData = (double*)(multisteps->hist_data); |
---|
| 256 | #endif |
---|
| 257 | |
---|
| 258 | unsigned int quantization_intervals; |
---|
| 259 | if(exe_params->optQuantMode==1) |
---|
| 260 | quantization_intervals = optimize_intervals_double_1D_opt(oriData, dataLength, realPrecision); |
---|
| 261 | else |
---|
| 262 | quantization_intervals = exe_params->intvCapacity; |
---|
| 263 | updateQuantizationInfo(quantization_intervals); |
---|
| 264 | |
---|
| 265 | size_t i; |
---|
| 266 | int reqLength; |
---|
| 267 | double medianValue = medianValue_d; |
---|
| 268 | short radExpo = getExponent_double(valueRangeSize/2); |
---|
| 269 | |
---|
| 270 | computeReqLength_double(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 271 | |
---|
| 272 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 273 | |
---|
| 274 | double* spaceFillingValue = oriData; // |
---|
| 275 | |
---|
| 276 | DynamicIntArray *exactLeadNumArray; |
---|
| 277 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 278 | |
---|
| 279 | DynamicByteArray *exactMidByteArray; |
---|
| 280 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 281 | |
---|
| 282 | DynamicIntArray *resiBitArray; |
---|
| 283 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 284 | |
---|
| 285 | unsigned char preDataBytes[8]; |
---|
| 286 | longToBytes_bigEndian(preDataBytes, 0); |
---|
| 287 | |
---|
| 288 | int reqBytesLength = reqLength/8; |
---|
| 289 | int resiBitsLength = reqLength%8; |
---|
| 290 | double last3CmprsData[3] = {0}; |
---|
| 291 | |
---|
| 292 | DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement)); |
---|
| 293 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 294 | |
---|
| 295 | //add the first data |
---|
| 296 | type[0] = 0; |
---|
| 297 | compressSingleDoubleValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 298 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 299 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 300 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 301 | listAdd_double(last3CmprsData, vce->data); |
---|
| 302 | #ifdef HAVE_TIMECMPR |
---|
| 303 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 304 | decData[0] = vce->data; |
---|
| 305 | #endif |
---|
| 306 | |
---|
| 307 | //add the second data |
---|
| 308 | type[1] = 0; |
---|
| 309 | compressSingleDoubleValue(vce, spaceFillingValue[1], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 310 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 311 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 312 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 313 | listAdd_double(last3CmprsData, vce->data); |
---|
| 314 | #ifdef HAVE_TIMECMPR |
---|
| 315 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 316 | decData[1] = vce->data; |
---|
| 317 | #endif |
---|
| 318 | int state; |
---|
| 319 | double checkRadius; |
---|
| 320 | double curData; |
---|
| 321 | double pred; |
---|
| 322 | double predAbsErr; |
---|
| 323 | checkRadius = (exe_params->intvCapacity-1)*realPrecision; |
---|
| 324 | double interval = 2*realPrecision; |
---|
| 325 | |
---|
| 326 | for(i=2;i<dataLength;i++) |
---|
| 327 | { |
---|
| 328 | //printf("%.30G\n",last3CmprsData[0]); |
---|
| 329 | curData = spaceFillingValue[i]; |
---|
| 330 | //pred = 2*last3CmprsData[0] - last3CmprsData[1]; |
---|
| 331 | pred = last3CmprsData[0]; |
---|
| 332 | predAbsErr = fabs(curData - pred); |
---|
[9ee2ce3] | 333 | if(predAbsErr<checkRadius) |
---|
[2c47b73] | 334 | { |
---|
| 335 | state = (predAbsErr/realPrecision+1)/2; |
---|
| 336 | if(curData>=pred) |
---|
| 337 | { |
---|
| 338 | type[i] = exe_params->intvRadius+state; |
---|
| 339 | pred = pred + state*interval; |
---|
| 340 | } |
---|
| 341 | else //curData<pred |
---|
| 342 | { |
---|
| 343 | type[i] = exe_params->intvRadius-state; |
---|
| 344 | pred = pred - state*interval; |
---|
| 345 | } |
---|
| 346 | listAdd_double(last3CmprsData, pred); |
---|
| 347 | #ifdef HAVE_TIMECMPR |
---|
| 348 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 349 | decData[i] = pred; |
---|
| 350 | #endif |
---|
| 351 | continue; |
---|
| 352 | } |
---|
| 353 | |
---|
| 354 | //unpredictable data processing |
---|
| 355 | type[i] = 0; |
---|
| 356 | compressSingleDoubleValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 357 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 358 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 359 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 360 | |
---|
| 361 | listAdd_double(last3CmprsData, vce->data); |
---|
| 362 | #ifdef HAVE_TIMECMPR |
---|
| 363 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 364 | decData[i] = vce->data; |
---|
| 365 | #endif |
---|
| 366 | |
---|
| 367 | }//end of for |
---|
| 368 | |
---|
| 369 | int exactDataNum = exactLeadNumArray->size; |
---|
| 370 | |
---|
| 371 | TightDataPointStorageD* tdps; |
---|
| 372 | |
---|
| 373 | new_TightDataPointStorageD(&tdps, dataLength, exactDataNum, |
---|
| 374 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 375 | exactLeadNumArray->array, |
---|
| 376 | resiBitArray->array, resiBitArray->size, |
---|
| 377 | resiBitsLength, |
---|
| 378 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 379 | |
---|
| 380 | // printf("exactDataNum=%d, expSegmentsInBytes_size=%d, exactMidByteArray->size=%d\n", |
---|
| 381 | // exactDataNum, expSegmentsInBytes_size, exactMidByteArray->size); |
---|
| 382 | |
---|
| 383 | //free memory |
---|
| 384 | free_DIA(exactLeadNumArray); |
---|
| 385 | free_DIA(resiBitArray); |
---|
| 386 | free(type); |
---|
| 387 | free(vce); |
---|
| 388 | free(lce); |
---|
| 389 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 390 | |
---|
| 391 | return tdps; |
---|
| 392 | } |
---|
| 393 | |
---|
| 394 | void SZ_compress_args_double_StoreOriData(double* oriData, size_t dataLength, TightDataPointStorageD* tdps, |
---|
| 395 | unsigned char** newByteData, size_t *outSize) |
---|
| 396 | { |
---|
| 397 | int doubleSize = sizeof(double); |
---|
| 398 | size_t k = 0, i; |
---|
| 399 | tdps->isLossless = 1; |
---|
| 400 | size_t totalByteLength = 3 + MetaDataByteLength + exe_params->SZ_SIZE_TYPE + 1 + doubleSize*dataLength; |
---|
| 401 | *newByteData = (unsigned char*)malloc(totalByteLength); |
---|
| 402 | |
---|
| 403 | unsigned char dsLengthBytes[8]; |
---|
| 404 | for (i = 0; i < 3; i++)//3 |
---|
| 405 | (*newByteData)[k++] = versionNumber[i]; |
---|
| 406 | |
---|
| 407 | if(exe_params->SZ_SIZE_TYPE==4)//1 |
---|
| 408 | (*newByteData)[k++] = 16; //00010000 |
---|
| 409 | else |
---|
| 410 | (*newByteData)[k++] = 80; //01010000: 01000000 indicates the SZ_SIZE_TYPE=8 |
---|
| 411 | |
---|
| 412 | convertSZParamsToBytes(confparams_cpr, &((*newByteData)[k])); |
---|
| 413 | k = k + MetaDataByteLength; |
---|
| 414 | |
---|
| 415 | sizeToBytes(dsLengthBytes,dataLength); |
---|
| 416 | for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++)//ST: 4 or 8 |
---|
| 417 | (*newByteData)[k++] = dsLengthBytes[i]; |
---|
| 418 | |
---|
| 419 | if(sysEndianType==BIG_ENDIAN_SYSTEM) |
---|
| 420 | memcpy((*newByteData)+4+MetaDataByteLength+exe_params->SZ_SIZE_TYPE, oriData, dataLength*doubleSize); |
---|
| 421 | else |
---|
| 422 | { |
---|
| 423 | unsigned char* p = (*newByteData)+4+MetaDataByteLength+exe_params->SZ_SIZE_TYPE; |
---|
| 424 | for(i=0;i<dataLength;i++,p+=doubleSize) |
---|
| 425 | doubleToBytes(p, oriData[i]); |
---|
| 426 | } |
---|
| 427 | *outSize = totalByteLength; |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | |
---|
| 431 | char SZ_compress_args_double_NoCkRngeNoGzip_1D(unsigned char** newByteData, double *oriData, |
---|
| 432 | size_t dataLength, double realPrecision, size_t *outSize, double valueRangeSize, double medianValue_d) |
---|
| 433 | { |
---|
| 434 | char compressionType = 0; |
---|
| 435 | TightDataPointStorageD* tdps = NULL; |
---|
| 436 | #ifdef HAVE_TIMECMPR |
---|
| 437 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 438 | { |
---|
| 439 | int timestep = sz_tsc->currentStep; |
---|
| 440 | if(timestep % confparams_cpr->snapshotCmprStep != 0) |
---|
| 441 | { |
---|
| 442 | tdps = SZ_compress_double_1D_MDQ_ts(oriData, dataLength, multisteps, realPrecision, valueRangeSize, medianValue_d); |
---|
| 443 | compressionType = 1; //time-series based compression |
---|
| 444 | } |
---|
| 445 | else |
---|
| 446 | { |
---|
| 447 | tdps = SZ_compress_double_1D_MDQ(oriData, dataLength, realPrecision, valueRangeSize, medianValue_d); |
---|
| 448 | compressionType = 0; //snapshot-based compression |
---|
| 449 | multisteps->lastSnapshotStep = timestep; |
---|
| 450 | } |
---|
| 451 | } |
---|
| 452 | else |
---|
| 453 | #endif |
---|
| 454 | tdps = SZ_compress_double_1D_MDQ(oriData, dataLength, realPrecision, valueRangeSize, medianValue_d); |
---|
| 455 | |
---|
| 456 | convertTDPStoFlatBytes_double(tdps, newByteData, outSize); |
---|
| 457 | |
---|
| 458 | if(*outSize>dataLength*sizeof(double)) |
---|
| 459 | SZ_compress_args_double_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 460 | |
---|
| 461 | free_TightDataPointStorageD(tdps); |
---|
| 462 | return compressionType; |
---|
| 463 | } |
---|
| 464 | |
---|
| 465 | TightDataPointStorageD* SZ_compress_double_2D_MDQ(double *oriData, size_t r1, size_t r2, double realPrecision, double valueRangeSize, double medianValue_d) |
---|
| 466 | { |
---|
| 467 | #ifdef HAVE_TIMECMPR |
---|
| 468 | double* decData = NULL; |
---|
| 469 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 470 | decData = (double*)(multisteps->hist_data); |
---|
| 471 | #endif |
---|
| 472 | |
---|
| 473 | unsigned int quantization_intervals; |
---|
| 474 | if(exe_params->optQuantMode==1) |
---|
| 475 | { |
---|
| 476 | quantization_intervals = optimize_intervals_double_2D_opt(oriData, r1, r2, realPrecision); |
---|
| 477 | updateQuantizationInfo(quantization_intervals); |
---|
| 478 | } |
---|
| 479 | else |
---|
| 480 | quantization_intervals = exe_params->intvCapacity; |
---|
| 481 | size_t i,j; |
---|
| 482 | int reqLength; |
---|
| 483 | double pred1D, pred2D; |
---|
| 484 | double diff = 0.0; |
---|
| 485 | double itvNum = 0; |
---|
| 486 | double *P0, *P1; |
---|
| 487 | |
---|
| 488 | size_t dataLength = r1*r2; |
---|
| 489 | |
---|
| 490 | P0 = (double*)malloc(r2*sizeof(double)); |
---|
| 491 | memset(P0, 0, r2*sizeof(double)); |
---|
| 492 | P1 = (double*)malloc(r2*sizeof(double)); |
---|
| 493 | memset(P1, 0, r2*sizeof(double)); |
---|
| 494 | |
---|
| 495 | double medianValue = medianValue_d; |
---|
| 496 | short radExpo = getExponent_double(valueRangeSize/2); |
---|
| 497 | computeReqLength_double(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 498 | |
---|
| 499 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 500 | //type[dataLength]=0; |
---|
| 501 | |
---|
| 502 | double* spaceFillingValue = oriData; // |
---|
| 503 | |
---|
| 504 | DynamicIntArray *exactLeadNumArray; |
---|
| 505 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 506 | |
---|
| 507 | DynamicByteArray *exactMidByteArray; |
---|
| 508 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 509 | |
---|
| 510 | DynamicIntArray *resiBitArray; |
---|
| 511 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 512 | |
---|
| 513 | type[0] = 0; |
---|
| 514 | |
---|
| 515 | unsigned char preDataBytes[8]; |
---|
| 516 | longToBytes_bigEndian(preDataBytes, 0); |
---|
| 517 | |
---|
| 518 | int reqBytesLength = reqLength/8; |
---|
| 519 | int resiBitsLength = reqLength%8; |
---|
| 520 | |
---|
| 521 | DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement)); |
---|
| 522 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 523 | |
---|
| 524 | /* Process Row-0 data 0*/ |
---|
| 525 | type[0] = 0; |
---|
| 526 | compressSingleDoubleValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 527 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 528 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 529 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 530 | P1[0] = vce->data; |
---|
| 531 | #ifdef HAVE_TIMECMPR |
---|
| 532 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 533 | decData[0] = vce->data; |
---|
| 534 | #endif |
---|
| 535 | |
---|
| 536 | /* Process Row-0 data 1*/ |
---|
| 537 | pred1D = P1[0]; |
---|
| 538 | diff = spaceFillingValue[1] - pred1D; |
---|
| 539 | |
---|
| 540 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 541 | |
---|
| 542 | if (itvNum < exe_params->intvCapacity) |
---|
| 543 | { |
---|
| 544 | if (diff < 0) itvNum = -itvNum; |
---|
| 545 | type[1] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 546 | P1[1] = pred1D + 2 * (type[1] - exe_params->intvRadius) * realPrecision; |
---|
| 547 | } |
---|
| 548 | else |
---|
| 549 | { |
---|
| 550 | type[1] = 0; |
---|
| 551 | compressSingleDoubleValue(vce, spaceFillingValue[1], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 552 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 553 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 554 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 555 | P1[1] = vce->data; |
---|
| 556 | } |
---|
| 557 | #ifdef HAVE_TIMECMPR |
---|
| 558 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 559 | decData[1] = P1[1]; |
---|
| 560 | #endif |
---|
| 561 | |
---|
| 562 | /* Process Row-0 data 2 --> data r2-1 */ |
---|
| 563 | for (j = 2; j < r2; j++) |
---|
| 564 | { |
---|
| 565 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
| 566 | diff = spaceFillingValue[j] - pred1D; |
---|
| 567 | |
---|
| 568 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 569 | |
---|
| 570 | if (itvNum < exe_params->intvCapacity) |
---|
| 571 | { |
---|
| 572 | if (diff < 0) itvNum = -itvNum; |
---|
| 573 | type[j] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 574 | P1[j] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
| 575 | } |
---|
| 576 | else |
---|
| 577 | { |
---|
| 578 | type[j] = 0; |
---|
| 579 | compressSingleDoubleValue(vce, spaceFillingValue[j], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 580 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 581 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 582 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 583 | P1[j] = vce->data; |
---|
| 584 | } |
---|
| 585 | #ifdef HAVE_TIMECMPR |
---|
| 586 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 587 | decData[j] = P1[j]; |
---|
| 588 | #endif |
---|
| 589 | } |
---|
| 590 | |
---|
| 591 | /* Process Row-1 --> Row-r1-1 */ |
---|
| 592 | size_t index; |
---|
| 593 | for (i = 1; i < r1; i++) |
---|
| 594 | { |
---|
| 595 | /* Process row-i data 0 */ |
---|
| 596 | index = i*r2; |
---|
| 597 | pred1D = P1[0]; |
---|
| 598 | diff = spaceFillingValue[index] - pred1D; |
---|
| 599 | |
---|
| 600 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 601 | |
---|
| 602 | if (itvNum < exe_params->intvCapacity) |
---|
| 603 | { |
---|
| 604 | if (diff < 0) itvNum = -itvNum; |
---|
| 605 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 606 | P0[0] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 607 | } |
---|
| 608 | else |
---|
| 609 | { |
---|
| 610 | type[index] = 0; |
---|
| 611 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 612 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 613 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 614 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 615 | P0[0] = vce->data; |
---|
| 616 | } |
---|
| 617 | #ifdef HAVE_TIMECMPR |
---|
| 618 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 619 | decData[index] = P0[0]; |
---|
| 620 | #endif |
---|
| 621 | |
---|
| 622 | /* Process row-i data 1 --> r2-1*/ |
---|
| 623 | for (j = 1; j < r2; j++) |
---|
| 624 | { |
---|
| 625 | index = i*r2+j; |
---|
| 626 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
| 627 | |
---|
| 628 | diff = spaceFillingValue[index] - pred2D; |
---|
| 629 | |
---|
| 630 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 631 | |
---|
| 632 | if (itvNum < exe_params->intvCapacity) |
---|
| 633 | { |
---|
| 634 | if (diff < 0) itvNum = -itvNum; |
---|
| 635 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 636 | P0[j] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 637 | } |
---|
| 638 | else |
---|
| 639 | { |
---|
| 640 | type[index] = 0; |
---|
| 641 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 642 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 643 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 644 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 645 | P0[j] = vce->data; |
---|
| 646 | } |
---|
| 647 | #ifdef HAVE_TIMECMPR |
---|
| 648 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 649 | decData[index] = P0[j]; |
---|
| 650 | #endif |
---|
| 651 | } |
---|
| 652 | |
---|
| 653 | double *Pt; |
---|
| 654 | Pt = P1; |
---|
| 655 | P1 = P0; |
---|
| 656 | P0 = Pt; |
---|
| 657 | } |
---|
| 658 | |
---|
| 659 | if(r2!=1) |
---|
| 660 | free(P0); |
---|
| 661 | free(P1); |
---|
| 662 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 663 | |
---|
| 664 | TightDataPointStorageD* tdps; |
---|
| 665 | |
---|
| 666 | new_TightDataPointStorageD(&tdps, dataLength, exactDataNum, |
---|
| 667 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 668 | exactLeadNumArray->array, |
---|
| 669 | resiBitArray->array, resiBitArray->size, |
---|
| 670 | resiBitsLength, |
---|
| 671 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 672 | |
---|
| 673 | /* int sum =0; |
---|
| 674 | for(i=0;i<dataLength;i++) |
---|
| 675 | if(type[i]==0) sum++; |
---|
| 676 | printf("opt_quantizations=%d, exactDataNum=%d, sum=%d\n",quantization_intervals, exactDataNum, sum); |
---|
| 677 | |
---|
| 678 | for(i=0;i<dataLength;i++) |
---|
| 679 | printf("%d ", type[i]); |
---|
| 680 | printf("\n");*/ |
---|
| 681 | |
---|
| 682 | // printf("exactDataNum=%d, expSegmentsInBytes_size=%d, exactMidByteArray->size=%d\n", |
---|
| 683 | // exactDataNum, expSegmentsInBytes_size, exactMidByteArray->size); |
---|
| 684 | |
---|
| 685 | // for(i = 3800;i<3844;i++) |
---|
| 686 | // printf("exactLeadNumArray->array[%d]=%d\n",i,exactLeadNumArray->array[i]); |
---|
| 687 | |
---|
| 688 | //free memory |
---|
| 689 | free_DIA(exactLeadNumArray); |
---|
| 690 | free_DIA(resiBitArray); |
---|
| 691 | free(type); |
---|
| 692 | free(vce); |
---|
| 693 | free(lce); |
---|
| 694 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 695 | |
---|
| 696 | return tdps; |
---|
| 697 | } |
---|
| 698 | |
---|
| 699 | /** |
---|
| 700 | * |
---|
| 701 | * Note: @r1 is high dimension |
---|
| 702 | * @r2 is low dimension |
---|
| 703 | * */ |
---|
| 704 | char SZ_compress_args_double_NoCkRngeNoGzip_2D(unsigned char** newByteData, double *oriData, size_t r1, size_t r2, double realPrecision, size_t *outSize, double valueRangeSize, double medianValue_d) |
---|
| 705 | { |
---|
| 706 | size_t dataLength = r1*r2; |
---|
| 707 | char compressionType = 0; |
---|
| 708 | TightDataPointStorageD* tdps = NULL; |
---|
| 709 | #ifdef HAVE_TIMECMPR |
---|
| 710 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 711 | { |
---|
| 712 | int timestep = sz_tsc->currentStep; |
---|
| 713 | if(timestep % confparams_cpr->snapshotCmprStep != 0) |
---|
| 714 | { |
---|
| 715 | tdps = SZ_compress_double_1D_MDQ_ts(oriData, dataLength, multisteps, realPrecision, valueRangeSize, medianValue_d); |
---|
| 716 | compressionType = 1; //time-series based compression |
---|
| 717 | } |
---|
| 718 | else |
---|
| 719 | { |
---|
| 720 | tdps = SZ_compress_double_2D_MDQ(oriData, r1, r2, realPrecision, valueRangeSize, medianValue_d); |
---|
| 721 | compressionType = 0; //snapshot-based compression |
---|
| 722 | multisteps->lastSnapshotStep = timestep; |
---|
| 723 | } |
---|
| 724 | } |
---|
| 725 | else |
---|
| 726 | #endif |
---|
| 727 | tdps = SZ_compress_double_2D_MDQ(oriData, r1, r2, realPrecision, valueRangeSize, medianValue_d); |
---|
| 728 | |
---|
| 729 | convertTDPStoFlatBytes_double(tdps, newByteData, outSize); |
---|
| 730 | |
---|
| 731 | if(*outSize>dataLength*sizeof(double)) |
---|
| 732 | SZ_compress_args_double_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 733 | |
---|
| 734 | free_TightDataPointStorageD(tdps); |
---|
| 735 | return compressionType; |
---|
| 736 | } |
---|
| 737 | |
---|
| 738 | TightDataPointStorageD* SZ_compress_double_3D_MDQ(double *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, double valueRangeSize, double medianValue_d) |
---|
| 739 | { |
---|
| 740 | #ifdef HAVE_TIMECMPR |
---|
| 741 | double* decData = NULL; |
---|
| 742 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 743 | decData = (double*)(multisteps->hist_data); |
---|
| 744 | #endif |
---|
| 745 | |
---|
| 746 | unsigned int quantization_intervals; |
---|
| 747 | if(exe_params->optQuantMode==1) |
---|
| 748 | { |
---|
| 749 | quantization_intervals = optimize_intervals_double_3D_opt(oriData, r1, r2, r3, realPrecision); |
---|
| 750 | updateQuantizationInfo(quantization_intervals); |
---|
| 751 | } |
---|
| 752 | else |
---|
| 753 | quantization_intervals = exe_params->intvCapacity; |
---|
| 754 | size_t i,j,k; |
---|
| 755 | int reqLength; |
---|
| 756 | double pred1D, pred2D, pred3D; |
---|
| 757 | double diff = 0.0; |
---|
| 758 | double itvNum = 0; |
---|
| 759 | double *P0, *P1; |
---|
| 760 | |
---|
| 761 | size_t dataLength = r1*r2*r3; |
---|
| 762 | |
---|
| 763 | size_t r23 = r2*r3; |
---|
| 764 | |
---|
| 765 | P0 = (double*)malloc(r23*sizeof(double)); |
---|
| 766 | P1 = (double*)malloc(r23*sizeof(double)); |
---|
| 767 | |
---|
| 768 | double medianValue = medianValue_d; |
---|
| 769 | short radExpo = getExponent_double(valueRangeSize/2); |
---|
| 770 | computeReqLength_double(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 771 | |
---|
| 772 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 773 | //type[dataLength]=0; |
---|
| 774 | |
---|
| 775 | double* spaceFillingValue = oriData; // |
---|
| 776 | |
---|
| 777 | DynamicIntArray *exactLeadNumArray; |
---|
| 778 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 779 | |
---|
| 780 | DynamicByteArray *exactMidByteArray; |
---|
| 781 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 782 | |
---|
| 783 | DynamicIntArray *resiBitArray; |
---|
| 784 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 785 | |
---|
| 786 | type[0] = 0; |
---|
| 787 | |
---|
| 788 | unsigned char preDataBytes[8]; |
---|
| 789 | longToBytes_bigEndian(preDataBytes, 0); |
---|
| 790 | |
---|
| 791 | int reqBytesLength = reqLength/8; |
---|
| 792 | int resiBitsLength = reqLength%8; |
---|
| 793 | |
---|
| 794 | DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement)); |
---|
| 795 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 796 | |
---|
| 797 | |
---|
| 798 | /////////////////////////// Process layer-0 /////////////////////////// |
---|
| 799 | /* Process Row-0 data 0*/ |
---|
| 800 | type[0] = 0; |
---|
| 801 | compressSingleDoubleValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 802 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 803 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 804 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 805 | P1[0] = vce->data; |
---|
| 806 | #ifdef HAVE_TIMECMPR |
---|
| 807 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 808 | decData[0] = P1[0]; |
---|
| 809 | #endif |
---|
| 810 | |
---|
| 811 | /* Process Row-0 data 1*/ |
---|
| 812 | pred1D = P1[0]; |
---|
| 813 | diff = spaceFillingValue[1] - pred1D; |
---|
| 814 | |
---|
| 815 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 816 | |
---|
| 817 | if (itvNum < exe_params->intvCapacity) |
---|
| 818 | { |
---|
| 819 | if (diff < 0) itvNum = -itvNum; |
---|
| 820 | type[1] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 821 | P1[1] = pred1D + 2 * (type[1] - exe_params->intvRadius) * realPrecision; |
---|
| 822 | } |
---|
| 823 | else |
---|
| 824 | { |
---|
| 825 | type[1] = 0; |
---|
| 826 | compressSingleDoubleValue(vce, spaceFillingValue[1], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 827 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 828 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 829 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 830 | P1[1] = vce->data; |
---|
| 831 | } |
---|
| 832 | #ifdef HAVE_TIMECMPR |
---|
| 833 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 834 | decData[1] = P1[1]; |
---|
| 835 | #endif |
---|
| 836 | |
---|
| 837 | /* Process Row-0 data 2 --> data r3-1 */ |
---|
| 838 | for (j = 2; j < r3; j++) |
---|
| 839 | { |
---|
| 840 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
| 841 | diff = spaceFillingValue[j] - pred1D; |
---|
| 842 | |
---|
| 843 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 844 | |
---|
| 845 | if (itvNum < exe_params->intvCapacity) |
---|
| 846 | { |
---|
| 847 | if (diff < 0) itvNum = -itvNum; |
---|
| 848 | type[j] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 849 | P1[j] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
| 850 | } |
---|
| 851 | else |
---|
| 852 | { |
---|
| 853 | type[j] = 0; |
---|
| 854 | compressSingleDoubleValue(vce, spaceFillingValue[j], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 855 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 856 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 857 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 858 | P1[j] = vce->data; |
---|
| 859 | } |
---|
| 860 | #ifdef HAVE_TIMECMPR |
---|
| 861 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 862 | decData[j] = P1[j]; |
---|
| 863 | #endif |
---|
| 864 | } |
---|
| 865 | |
---|
| 866 | /* Process Row-1 --> Row-r2-1 */ |
---|
| 867 | size_t index; |
---|
| 868 | for (i = 1; i < r2; i++) |
---|
| 869 | { |
---|
| 870 | /* Process row-i data 0 */ |
---|
| 871 | index = i*r3; |
---|
| 872 | pred1D = P1[index-r3]; |
---|
| 873 | diff = spaceFillingValue[index] - pred1D; |
---|
| 874 | |
---|
| 875 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 876 | |
---|
| 877 | if (itvNum < exe_params->intvCapacity) |
---|
| 878 | { |
---|
| 879 | if (diff < 0) itvNum = -itvNum; |
---|
| 880 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 881 | P1[index] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 882 | } |
---|
| 883 | else |
---|
| 884 | { |
---|
| 885 | type[index] = 0; |
---|
| 886 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 887 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 888 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 889 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 890 | P1[index] = vce->data; |
---|
| 891 | } |
---|
| 892 | #ifdef HAVE_TIMECMPR |
---|
| 893 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 894 | decData[index] = P1[index]; |
---|
| 895 | #endif |
---|
| 896 | |
---|
| 897 | /* Process row-i data 1 --> data r3-1*/ |
---|
| 898 | for (j = 1; j < r3; j++) |
---|
| 899 | { |
---|
| 900 | index = i*r3+j; |
---|
| 901 | pred2D = P1[index-1] + P1[index-r3] - P1[index-r3-1]; |
---|
| 902 | |
---|
| 903 | diff = spaceFillingValue[index] - pred2D; |
---|
| 904 | |
---|
| 905 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 906 | |
---|
| 907 | if (itvNum < exe_params->intvCapacity) |
---|
| 908 | { |
---|
| 909 | if (diff < 0) itvNum = -itvNum; |
---|
| 910 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 911 | P1[index] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 912 | } |
---|
| 913 | else |
---|
| 914 | { |
---|
| 915 | type[index] = 0; |
---|
| 916 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 917 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 918 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 919 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 920 | P1[index] = vce->data; |
---|
| 921 | } |
---|
| 922 | #ifdef HAVE_TIMECMPR |
---|
| 923 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 924 | decData[index] = P1[index]; |
---|
| 925 | #endif |
---|
| 926 | } |
---|
| 927 | } |
---|
| 928 | |
---|
| 929 | |
---|
| 930 | /////////////////////////// Process layer-1 --> layer-r1-1 /////////////////////////// |
---|
| 931 | |
---|
| 932 | for (k = 1; k < r1; k++) |
---|
| 933 | { |
---|
| 934 | /* Process Row-0 data 0*/ |
---|
| 935 | index = k*r23; |
---|
| 936 | pred1D = P1[0]; |
---|
| 937 | diff = spaceFillingValue[index] - pred1D; |
---|
| 938 | |
---|
| 939 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 940 | |
---|
| 941 | if (itvNum < exe_params->intvCapacity) |
---|
| 942 | { |
---|
| 943 | if (diff < 0) itvNum = -itvNum; |
---|
| 944 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 945 | P0[0] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 946 | } |
---|
| 947 | else |
---|
| 948 | { |
---|
| 949 | type[index] = 0; |
---|
| 950 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 951 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 952 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 953 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 954 | P0[0] = vce->data; |
---|
| 955 | } |
---|
| 956 | #ifdef HAVE_TIMECMPR |
---|
| 957 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 958 | decData[index] = P0[0]; |
---|
| 959 | #endif |
---|
| 960 | |
---|
| 961 | /* Process Row-0 data 1 --> data r3-1 */ |
---|
| 962 | for (j = 1; j < r3; j++) |
---|
| 963 | { |
---|
| 964 | //index = k*r2*r3+j; |
---|
| 965 | index ++; |
---|
| 966 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
| 967 | diff = spaceFillingValue[index] - pred2D; |
---|
| 968 | |
---|
| 969 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 970 | |
---|
| 971 | if (itvNum < exe_params->intvCapacity) |
---|
| 972 | { |
---|
| 973 | if (diff < 0) itvNum = -itvNum; |
---|
| 974 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 975 | P0[j] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 976 | } |
---|
| 977 | else |
---|
| 978 | { |
---|
| 979 | type[index] = 0; |
---|
| 980 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 981 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 982 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 983 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 984 | P0[j] = vce->data; |
---|
| 985 | } |
---|
| 986 | #ifdef HAVE_TIMECMPR |
---|
| 987 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 988 | decData[index] = P0[j]; |
---|
| 989 | #endif |
---|
| 990 | } |
---|
| 991 | |
---|
| 992 | /* Process Row-1 --> Row-r2-1 */ |
---|
| 993 | size_t index2D; |
---|
| 994 | for (i = 1; i < r2; i++) |
---|
| 995 | { |
---|
| 996 | /* Process Row-i data 0 */ |
---|
| 997 | index = k*r23 + i*r3; |
---|
| 998 | index2D = i*r3; |
---|
| 999 | pred2D = P0[index2D-r3] + P1[index2D] - P1[index2D-r3]; |
---|
| 1000 | diff = spaceFillingValue[index] - pred2D; |
---|
| 1001 | |
---|
| 1002 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1003 | |
---|
| 1004 | if (itvNum < exe_params->intvCapacity) |
---|
| 1005 | { |
---|
| 1006 | if (diff < 0) itvNum = -itvNum; |
---|
| 1007 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1008 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1009 | } |
---|
| 1010 | else |
---|
| 1011 | { |
---|
| 1012 | type[index] = 0; |
---|
| 1013 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1014 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1015 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1016 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1017 | P0[index2D] = vce->data; |
---|
| 1018 | } |
---|
| 1019 | #ifdef HAVE_TIMECMPR |
---|
| 1020 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1021 | decData[index] = P0[index2D]; |
---|
| 1022 | #endif |
---|
| 1023 | |
---|
| 1024 | /* Process Row-i data 1 --> data r3-1 */ |
---|
| 1025 | for (j = 1; j < r3; j++) |
---|
| 1026 | { |
---|
| 1027 | //index = k*r2*r3 + i*r3 + j; |
---|
| 1028 | index ++; |
---|
| 1029 | index2D = i*r3 + j; |
---|
| 1030 | pred3D = P0[index2D-1] + P0[index2D-r3]+ P1[index2D] - P0[index2D-r3-1] - P1[index2D-r3] - P1[index2D-1] + P1[index2D-r3-1]; |
---|
| 1031 | diff = spaceFillingValue[index] - pred3D; |
---|
| 1032 | |
---|
| 1033 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1034 | |
---|
| 1035 | if (itvNum < exe_params->intvCapacity) |
---|
| 1036 | { |
---|
| 1037 | if (diff < 0) itvNum = -itvNum; |
---|
| 1038 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1039 | P0[index2D] = pred3D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1040 | } |
---|
| 1041 | else |
---|
| 1042 | { |
---|
| 1043 | type[index] = 0; |
---|
| 1044 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1045 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1046 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1047 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1048 | P0[index2D] = vce->data; |
---|
| 1049 | } |
---|
| 1050 | #ifdef HAVE_TIMECMPR |
---|
| 1051 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1052 | decData[index] = P0[index2D]; |
---|
| 1053 | #endif |
---|
| 1054 | } |
---|
| 1055 | } |
---|
| 1056 | |
---|
| 1057 | double *Pt; |
---|
| 1058 | Pt = P1; |
---|
| 1059 | P1 = P0; |
---|
| 1060 | P0 = Pt; |
---|
| 1061 | } |
---|
| 1062 | if(r23!=1) |
---|
| 1063 | free(P0); |
---|
| 1064 | free(P1); |
---|
| 1065 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 1066 | |
---|
| 1067 | TightDataPointStorageD* tdps; |
---|
| 1068 | |
---|
| 1069 | new_TightDataPointStorageD(&tdps, dataLength, exactDataNum, |
---|
| 1070 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 1071 | exactLeadNumArray->array, |
---|
| 1072 | resiBitArray->array, resiBitArray->size, |
---|
| 1073 | resiBitsLength, |
---|
| 1074 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 1075 | |
---|
| 1076 | // printf("exactDataNum=%d, expSegmentsInBytes_size=%d, exactMidByteArray->size=%d\n", |
---|
| 1077 | // exactDataNum, expSegmentsInBytes_size, exactMidByteArray->size); |
---|
| 1078 | |
---|
| 1079 | // for(i = 3800;i<3844;i++) |
---|
| 1080 | // printf("exactLeadNumArray->array[%d]=%d\n",i,exactLeadNumArray->array[i]); |
---|
| 1081 | |
---|
| 1082 | //free memory |
---|
| 1083 | free_DIA(exactLeadNumArray); |
---|
| 1084 | free_DIA(resiBitArray); |
---|
| 1085 | free(type); |
---|
| 1086 | free(vce); |
---|
| 1087 | free(lce); |
---|
| 1088 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 1089 | |
---|
| 1090 | return tdps; |
---|
| 1091 | } |
---|
| 1092 | |
---|
| 1093 | |
---|
| 1094 | char SZ_compress_args_double_NoCkRngeNoGzip_3D(unsigned char** newByteData, double *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, size_t *outSize, double valueRangeSize, double medianValue_d) |
---|
| 1095 | { |
---|
| 1096 | size_t dataLength = r1*r2*r3; |
---|
| 1097 | char compressionType = 0; |
---|
| 1098 | TightDataPointStorageD* tdps = NULL; |
---|
| 1099 | #ifdef HAVE_TIMECMPR |
---|
| 1100 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1101 | { |
---|
| 1102 | int timestep = sz_tsc->currentStep; |
---|
| 1103 | if(timestep % confparams_cpr->snapshotCmprStep != 0) |
---|
| 1104 | { |
---|
| 1105 | tdps = SZ_compress_double_1D_MDQ_ts(oriData, dataLength, multisteps, realPrecision, valueRangeSize, medianValue_d); |
---|
| 1106 | compressionType = 1; //time-series based compression |
---|
| 1107 | } |
---|
| 1108 | else |
---|
| 1109 | { |
---|
| 1110 | tdps = SZ_compress_double_3D_MDQ(oriData, r1, r2, r3, realPrecision, valueRangeSize, medianValue_d); |
---|
| 1111 | compressionType = 0; //snapshot-based compression |
---|
| 1112 | multisteps->lastSnapshotStep = timestep; |
---|
| 1113 | } |
---|
| 1114 | } |
---|
| 1115 | else |
---|
| 1116 | #endif |
---|
| 1117 | tdps = SZ_compress_double_3D_MDQ(oriData, r1, r2, r3, realPrecision, valueRangeSize, medianValue_d); |
---|
| 1118 | |
---|
| 1119 | convertTDPStoFlatBytes_double(tdps, newByteData, outSize); |
---|
| 1120 | |
---|
| 1121 | if(*outSize>dataLength*sizeof(double)) |
---|
| 1122 | SZ_compress_args_double_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 1123 | |
---|
| 1124 | free_TightDataPointStorageD(tdps); |
---|
| 1125 | return compressionType; |
---|
| 1126 | } |
---|
| 1127 | |
---|
| 1128 | TightDataPointStorageD* SZ_compress_double_4D_MDQ(double *oriData, size_t r1, size_t r2, size_t r3, size_t r4, double realPrecision, double valueRangeSize, double medianValue_d) |
---|
| 1129 | { |
---|
| 1130 | unsigned int quantization_intervals; |
---|
| 1131 | if(exe_params->optQuantMode==1) |
---|
| 1132 | { |
---|
| 1133 | quantization_intervals = optimize_intervals_double_4D(oriData, r1, r2, r3, r4, realPrecision); |
---|
| 1134 | updateQuantizationInfo(quantization_intervals); |
---|
| 1135 | } |
---|
| 1136 | else |
---|
| 1137 | quantization_intervals = exe_params->intvCapacity; |
---|
| 1138 | |
---|
| 1139 | size_t i,j,k; |
---|
| 1140 | int reqLength; |
---|
| 1141 | double pred1D, pred2D, pred3D; |
---|
| 1142 | double diff = 0.0; |
---|
| 1143 | double itvNum = 0; |
---|
| 1144 | double *P0, *P1; |
---|
| 1145 | |
---|
| 1146 | size_t dataLength = r1*r2*r3*r4; |
---|
| 1147 | |
---|
| 1148 | size_t r234 = r2*r3*r4; |
---|
| 1149 | size_t r34 = r3*r4; |
---|
| 1150 | |
---|
| 1151 | P0 = (double*)malloc(r34*sizeof(double)); |
---|
| 1152 | P1 = (double*)malloc(r34*sizeof(double)); |
---|
| 1153 | |
---|
| 1154 | double medianValue = medianValue_d; |
---|
| 1155 | short radExpo = getExponent_double(valueRangeSize/2); |
---|
| 1156 | computeReqLength_double(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 1157 | |
---|
| 1158 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 1159 | |
---|
| 1160 | double* spaceFillingValue = oriData; // |
---|
| 1161 | |
---|
| 1162 | DynamicIntArray *exactLeadNumArray; |
---|
| 1163 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 1164 | |
---|
| 1165 | DynamicByteArray *exactMidByteArray; |
---|
| 1166 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 1167 | |
---|
| 1168 | DynamicIntArray *resiBitArray; |
---|
| 1169 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 1170 | |
---|
| 1171 | unsigned char preDataBytes[8]; |
---|
| 1172 | longToBytes_bigEndian(preDataBytes, 0); |
---|
| 1173 | |
---|
| 1174 | int reqBytesLength = reqLength/8; |
---|
| 1175 | int resiBitsLength = reqLength%8; |
---|
| 1176 | |
---|
| 1177 | DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement)); |
---|
| 1178 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 1179 | |
---|
| 1180 | |
---|
| 1181 | size_t l; |
---|
| 1182 | for (l = 0; l < r1; l++) |
---|
| 1183 | { |
---|
| 1184 | |
---|
| 1185 | /////////////////////////// Process layer-0 /////////////////////////// |
---|
| 1186 | /* Process Row-0 data 0*/ |
---|
| 1187 | size_t index = l*r234; |
---|
| 1188 | size_t index2D = 0; |
---|
| 1189 | |
---|
| 1190 | type[index] = 0; |
---|
| 1191 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1192 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1193 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1194 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1195 | P1[index2D] = vce->data; |
---|
| 1196 | |
---|
| 1197 | /* Process Row-0 data 1*/ |
---|
| 1198 | index = l*r234+1; |
---|
| 1199 | index2D = 1; |
---|
| 1200 | |
---|
| 1201 | pred1D = P1[index2D-1]; |
---|
| 1202 | diff = spaceFillingValue[index] - pred1D; |
---|
| 1203 | |
---|
| 1204 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1205 | |
---|
| 1206 | if (itvNum < exe_params->intvCapacity) |
---|
| 1207 | { |
---|
| 1208 | if (diff < 0) itvNum = -itvNum; |
---|
| 1209 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1210 | P1[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1211 | } |
---|
| 1212 | else |
---|
| 1213 | { |
---|
| 1214 | type[index] = 0; |
---|
| 1215 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1216 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1217 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1218 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1219 | P1[index2D] = vce->data; |
---|
| 1220 | } |
---|
| 1221 | |
---|
| 1222 | /* Process Row-0 data 2 --> data r4-1 */ |
---|
| 1223 | for (j = 2; j < r4; j++) |
---|
| 1224 | { |
---|
| 1225 | index = l*r234+j; |
---|
| 1226 | index2D = j; |
---|
| 1227 | |
---|
| 1228 | pred1D = 2*P1[index2D-1] - P1[index2D-2]; |
---|
| 1229 | diff = spaceFillingValue[index] - pred1D; |
---|
| 1230 | |
---|
| 1231 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1232 | |
---|
| 1233 | if (itvNum < exe_params->intvCapacity) |
---|
| 1234 | { |
---|
| 1235 | if (diff < 0) itvNum = -itvNum; |
---|
| 1236 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1237 | P1[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1238 | } |
---|
| 1239 | else |
---|
| 1240 | { |
---|
| 1241 | type[index] = 0; |
---|
| 1242 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1243 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1244 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1245 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1246 | P1[index2D] = vce->data; |
---|
| 1247 | } |
---|
| 1248 | } |
---|
| 1249 | |
---|
| 1250 | /* Process Row-1 --> Row-r3-1 */ |
---|
| 1251 | for (i = 1; i < r3; i++) |
---|
| 1252 | { |
---|
| 1253 | /* Process row-i data 0 */ |
---|
| 1254 | index = l*r234+i*r4; |
---|
| 1255 | index2D = i*r4; |
---|
| 1256 | |
---|
| 1257 | pred1D = P1[index2D-r4]; |
---|
| 1258 | diff = spaceFillingValue[index] - pred1D; |
---|
| 1259 | |
---|
| 1260 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1261 | |
---|
| 1262 | if (itvNum < exe_params->intvCapacity) |
---|
| 1263 | { |
---|
| 1264 | if (diff < 0) itvNum = -itvNum; |
---|
| 1265 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1266 | P1[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1267 | } |
---|
| 1268 | else |
---|
| 1269 | { |
---|
| 1270 | type[index] = 0; |
---|
| 1271 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1272 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1273 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1274 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1275 | P1[index2D] = vce->data; |
---|
| 1276 | } |
---|
| 1277 | |
---|
| 1278 | /* Process row-i data 1 --> data r4-1*/ |
---|
| 1279 | for (j = 1; j < r4; j++) |
---|
| 1280 | { |
---|
| 1281 | index = l*r234+i*r4+j; |
---|
| 1282 | index2D = i*r4+j; |
---|
| 1283 | |
---|
| 1284 | pred2D = P1[index2D-1] + P1[index2D-r4] - P1[index2D-r4-1]; |
---|
| 1285 | |
---|
| 1286 | diff = spaceFillingValue[index] - pred2D; |
---|
| 1287 | |
---|
| 1288 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1289 | |
---|
| 1290 | if (itvNum < exe_params->intvCapacity) |
---|
| 1291 | { |
---|
| 1292 | if (diff < 0) itvNum = -itvNum; |
---|
| 1293 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1294 | P1[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1295 | } |
---|
| 1296 | else |
---|
| 1297 | { |
---|
| 1298 | type[index] = 0; |
---|
| 1299 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1300 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1301 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1302 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1303 | P1[index2D] = vce->data; |
---|
| 1304 | } |
---|
| 1305 | } |
---|
| 1306 | } |
---|
| 1307 | |
---|
| 1308 | |
---|
| 1309 | /////////////////////////// Process layer-1 --> layer-r2-1 /////////////////////////// |
---|
| 1310 | |
---|
| 1311 | for (k = 1; k < r2; k++) |
---|
| 1312 | { |
---|
| 1313 | /* Process Row-0 data 0*/ |
---|
| 1314 | index = l*r234+k*r34; |
---|
| 1315 | index2D = 0; |
---|
| 1316 | |
---|
| 1317 | pred1D = P1[index2D]; |
---|
| 1318 | diff = spaceFillingValue[index] - pred1D; |
---|
| 1319 | |
---|
| 1320 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1321 | |
---|
| 1322 | if (itvNum < exe_params->intvCapacity) |
---|
| 1323 | { |
---|
| 1324 | if (diff < 0) itvNum = -itvNum; |
---|
| 1325 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1326 | P0[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1327 | } |
---|
| 1328 | else |
---|
| 1329 | { |
---|
| 1330 | type[index] = 0; |
---|
| 1331 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1332 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1333 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1334 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1335 | P0[index2D] = vce->data; |
---|
| 1336 | } |
---|
| 1337 | |
---|
| 1338 | |
---|
| 1339 | /* Process Row-0 data 1 --> data r4-1 */ |
---|
| 1340 | for (j = 1; j < r4; j++) |
---|
| 1341 | { |
---|
| 1342 | index = l*r234+k*r34+j; |
---|
| 1343 | index2D = j; |
---|
| 1344 | |
---|
| 1345 | pred2D = P0[index2D-1] + P1[index2D] - P1[index2D-1]; |
---|
| 1346 | diff = spaceFillingValue[index] - pred2D; |
---|
| 1347 | |
---|
| 1348 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1349 | |
---|
| 1350 | if (itvNum < exe_params->intvCapacity) |
---|
| 1351 | { |
---|
| 1352 | if (diff < 0) itvNum = -itvNum; |
---|
| 1353 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1354 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1355 | } |
---|
| 1356 | else |
---|
| 1357 | { |
---|
| 1358 | type[index] = 0; |
---|
| 1359 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1360 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1361 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1362 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1363 | P0[index2D] = vce->data; |
---|
| 1364 | } |
---|
| 1365 | } |
---|
| 1366 | |
---|
| 1367 | /* Process Row-1 --> Row-r3-1 */ |
---|
| 1368 | for (i = 1; i < r3; i++) |
---|
| 1369 | { |
---|
| 1370 | /* Process Row-i data 0 */ |
---|
| 1371 | index = l*r234+k*r34+i*r4; |
---|
| 1372 | index2D = i*r4; |
---|
| 1373 | |
---|
| 1374 | pred2D = P0[index2D-r4] + P1[index2D] - P1[index2D-r4]; |
---|
| 1375 | diff = spaceFillingValue[index] - pred2D; |
---|
| 1376 | |
---|
| 1377 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1378 | |
---|
| 1379 | if (itvNum < exe_params->intvCapacity) |
---|
| 1380 | { |
---|
| 1381 | if (diff < 0) itvNum = -itvNum; |
---|
| 1382 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1383 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1384 | } |
---|
| 1385 | else |
---|
| 1386 | { |
---|
| 1387 | type[index] = 0; |
---|
| 1388 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1389 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1390 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1391 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1392 | P0[index2D] = vce->data; |
---|
| 1393 | } |
---|
| 1394 | |
---|
| 1395 | /* Process Row-i data 1 --> data r4-1 */ |
---|
| 1396 | for (j = 1; j < r4; j++) |
---|
| 1397 | { |
---|
| 1398 | index = l*r234+k*r34+i*r4+j; |
---|
| 1399 | index2D = i*r4+j; |
---|
| 1400 | |
---|
| 1401 | pred3D = P0[index2D-1] + P0[index2D-r4]+ P1[index2D] - P0[index2D-r4-1] - P1[index2D-r4] - P1[index2D-1] + P1[index2D-r4-1]; |
---|
| 1402 | diff = spaceFillingValue[index] - pred3D; |
---|
| 1403 | |
---|
| 1404 | |
---|
| 1405 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1406 | |
---|
| 1407 | if (itvNum < exe_params->intvCapacity) |
---|
| 1408 | { |
---|
| 1409 | if (diff < 0) itvNum = -itvNum; |
---|
| 1410 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1411 | P0[index2D] = pred3D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1412 | } |
---|
| 1413 | else |
---|
| 1414 | { |
---|
| 1415 | type[index] = 0; |
---|
| 1416 | compressSingleDoubleValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1417 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1418 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 1419 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1420 | P0[index2D] = vce->data; |
---|
| 1421 | } |
---|
| 1422 | } |
---|
| 1423 | } |
---|
| 1424 | |
---|
| 1425 | double *Pt; |
---|
| 1426 | Pt = P1; |
---|
| 1427 | P1 = P0; |
---|
| 1428 | P0 = Pt; |
---|
| 1429 | } |
---|
| 1430 | } |
---|
| 1431 | |
---|
| 1432 | free(P0); |
---|
| 1433 | free(P1); |
---|
| 1434 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 1435 | |
---|
| 1436 | TightDataPointStorageD* tdps; |
---|
| 1437 | |
---|
| 1438 | new_TightDataPointStorageD(&tdps, dataLength, exactDataNum, |
---|
| 1439 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 1440 | exactLeadNumArray->array, |
---|
| 1441 | resiBitArray->array, resiBitArray->size, |
---|
| 1442 | resiBitsLength, |
---|
| 1443 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 1444 | |
---|
| 1445 | //free memory |
---|
| 1446 | free_DIA(exactLeadNumArray); |
---|
| 1447 | free_DIA(resiBitArray); |
---|
| 1448 | free(type); |
---|
| 1449 | free(vce); |
---|
| 1450 | free(lce); |
---|
| 1451 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 1452 | |
---|
| 1453 | return tdps; |
---|
| 1454 | } |
---|
| 1455 | |
---|
| 1456 | |
---|
| 1457 | char SZ_compress_args_double_NoCkRngeNoGzip_4D(unsigned char** newByteData, double *oriData, size_t r1, size_t r2, size_t r3, size_t r4, double realPrecision, size_t *outSize, double valueRangeSize, double medianValue_d) |
---|
| 1458 | { |
---|
| 1459 | TightDataPointStorageD* tdps = SZ_compress_double_4D_MDQ(oriData, r1, r2, r3, r4, realPrecision, valueRangeSize, medianValue_d); |
---|
| 1460 | |
---|
| 1461 | convertTDPStoFlatBytes_double(tdps, newByteData, outSize); |
---|
| 1462 | |
---|
| 1463 | size_t dataLength = r1*r2*r3*r4; |
---|
| 1464 | if(*outSize>dataLength*sizeof(double)) |
---|
| 1465 | SZ_compress_args_double_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 1466 | |
---|
| 1467 | free_TightDataPointStorageD(tdps); |
---|
| 1468 | return 0; |
---|
| 1469 | } |
---|
| 1470 | |
---|
| 1471 | void SZ_compress_args_double_withinRange(unsigned char** newByteData, double *oriData, size_t dataLength, size_t *outSize) |
---|
| 1472 | { |
---|
| 1473 | TightDataPointStorageD* tdps = (TightDataPointStorageD*) malloc(sizeof(TightDataPointStorageD)); |
---|
| 1474 | tdps->rtypeArray = NULL; |
---|
| 1475 | tdps->typeArray = NULL; |
---|
| 1476 | tdps->leadNumArray = NULL; |
---|
| 1477 | tdps->residualMidBits = NULL; |
---|
| 1478 | |
---|
| 1479 | tdps->allSameData = 1; |
---|
| 1480 | tdps->dataSeriesLength = dataLength; |
---|
| 1481 | tdps->exactMidBytes = (unsigned char*)malloc(sizeof(unsigned char)*8); |
---|
| 1482 | tdps->pwrErrBoundBytes = NULL; |
---|
| 1483 | tdps->isLossless = 0; |
---|
| 1484 | double value = oriData[0]; |
---|
| 1485 | doubleToBytes(tdps->exactMidBytes, value); |
---|
| 1486 | tdps->exactMidBytes_size = 8; |
---|
| 1487 | |
---|
| 1488 | size_t tmpOutSize; |
---|
| 1489 | //unsigned char *tmpByteData; |
---|
| 1490 | convertTDPStoFlatBytes_double(tdps, newByteData, &tmpOutSize); |
---|
| 1491 | //convertTDPStoFlatBytes_double(tdps, &tmpByteData, &tmpOutSize); |
---|
| 1492 | |
---|
| 1493 | //*newByteData = (unsigned char*)malloc(sizeof(unsigned char)*16); //for floating-point data (1+3+4+4) |
---|
| 1494 | //memcpy(*newByteData, tmpByteData, 16); |
---|
| 1495 | *outSize = tmpOutSize;//12==3+1+8(double_size)+MetaDataByteLength |
---|
| 1496 | free_TightDataPointStorageD(tdps); |
---|
| 1497 | } |
---|
| 1498 | |
---|
| 1499 | int SZ_compress_args_double_wRngeNoGzip(unsigned char** newByteData, double *oriData, |
---|
| 1500 | size_t r5, size_t r4, size_t r3, size_t r2, size_t r1, size_t *outSize, |
---|
| 1501 | int errBoundMode, double absErr_Bound, double relBoundRatio, double pwrErrRatio) |
---|
| 1502 | { |
---|
| 1503 | int status = SZ_SCES; |
---|
| 1504 | size_t dataLength = computeDataLength(r5,r4,r3,r2,r1); |
---|
| 1505 | double valueRangeSize = 0, medianValue = 0; |
---|
| 1506 | |
---|
| 1507 | double min = computeRangeSize_double(oriData, dataLength, &valueRangeSize, &medianValue); |
---|
| 1508 | double max = min+valueRangeSize; |
---|
| 1509 | double realPrecision = getRealPrecision_double(valueRangeSize, errBoundMode, absErr_Bound, relBoundRatio, &status); |
---|
| 1510 | |
---|
| 1511 | if(valueRangeSize <= realPrecision) |
---|
| 1512 | { |
---|
| 1513 | SZ_compress_args_double_withinRange(newByteData, oriData, dataLength, outSize); |
---|
| 1514 | } |
---|
| 1515 | else |
---|
| 1516 | { |
---|
| 1517 | if(r5==0&&r4==0&&r3==0&&r2==0) |
---|
| 1518 | { |
---|
| 1519 | if(errBoundMode>=PW_REL) |
---|
| 1520 | { |
---|
[9ee2ce3] | 1521 | SZ_compress_args_double_NoCkRngeNoGzip_1D_pwr(newByteData, oriData, pwrErrRatio, r1, outSize, min, max); |
---|
| 1522 | //SZ_compress_args_double_NoCkRngeNoGzip_1D_pwrgroup(newByteData, oriData, r1, absErr_Bound, relBoundRatio, pwrErrRatio, valueRangeSize, medianValue, outSize); |
---|
[2c47b73] | 1523 | } |
---|
| 1524 | else |
---|
| 1525 | SZ_compress_args_double_NoCkRngeNoGzip_1D(newByteData, oriData, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
| 1526 | } |
---|
| 1527 | else if(r5==0&&r4==0&&r3==0) |
---|
| 1528 | { |
---|
| 1529 | if(errBoundMode>=PW_REL) |
---|
| 1530 | SZ_compress_args_double_NoCkRngeNoGzip_2D_pwr(newByteData, oriData, realPrecision, r2, r1, outSize, min, max); |
---|
| 1531 | else |
---|
| 1532 | SZ_compress_args_double_NoCkRngeNoGzip_2D(newByteData, oriData, r2, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
| 1533 | } |
---|
| 1534 | else if(r5==0&&r4==0) |
---|
| 1535 | { |
---|
| 1536 | if(errBoundMode>=PW_REL) |
---|
| 1537 | SZ_compress_args_double_NoCkRngeNoGzip_3D_pwr(newByteData, oriData, realPrecision, r3, r2, r1, outSize, min, max); |
---|
| 1538 | else |
---|
| 1539 | SZ_compress_args_double_NoCkRngeNoGzip_3D(newByteData, oriData, r3, r2, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
| 1540 | } |
---|
| 1541 | else if(r5==0) |
---|
| 1542 | { |
---|
| 1543 | if(errBoundMode>=PW_REL) |
---|
| 1544 | SZ_compress_args_double_NoCkRngeNoGzip_3D_pwr(newByteData, oriData, realPrecision, r4*r3, r2, r1, outSize, min, max); |
---|
| 1545 | else |
---|
| 1546 | SZ_compress_args_double_NoCkRngeNoGzip_3D(newByteData, oriData, r4*r3, r2, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
| 1547 | } |
---|
| 1548 | } |
---|
| 1549 | return status; |
---|
| 1550 | } |
---|
| 1551 | |
---|
| 1552 | int SZ_compress_args_double(unsigned char** newByteData, double *oriData, |
---|
| 1553 | size_t r5, size_t r4, size_t r3, size_t r2, size_t r1, size_t *outSize, |
---|
| 1554 | int errBoundMode, double absErr_Bound, double relBoundRatio, double pwRelBoundRatio) |
---|
| 1555 | { |
---|
| 1556 | confparams_cpr->errorBoundMode = errBoundMode; |
---|
| 1557 | if(errBoundMode==PW_REL) |
---|
| 1558 | { |
---|
| 1559 | confparams_cpr->pw_relBoundRatio = pwRelBoundRatio; |
---|
| 1560 | //confparams_cpr->pwr_type = SZ_PWR_MIN_TYPE; |
---|
| 1561 | if(confparams_cpr->pwr_type==SZ_PWR_AVG_TYPE && r3 != 0 ) |
---|
| 1562 | { |
---|
| 1563 | printf("Error: Current version doesn't support 3D data compression with point-wise relative error bound being based on pwrType=AVG\n"); |
---|
| 1564 | exit(0); |
---|
| 1565 | return SZ_NSCS; |
---|
| 1566 | } |
---|
[9ee2ce3] | 1567 | } |
---|
[2c47b73] | 1568 | |
---|
| 1569 | int status = SZ_SCES; |
---|
| 1570 | size_t dataLength = computeDataLength(r5,r4,r3,r2,r1); |
---|
| 1571 | |
---|
| 1572 | if(dataLength <= MIN_NUM_OF_ELEMENTS) |
---|
| 1573 | { |
---|
| 1574 | *newByteData = SZ_skip_compress_double(oriData, dataLength, outSize); |
---|
| 1575 | return status; |
---|
| 1576 | } |
---|
| 1577 | |
---|
| 1578 | double valueRangeSize = 0, medianValue = 0; |
---|
| 1579 | |
---|
| 1580 | double min = computeRangeSize_double(oriData, dataLength, &valueRangeSize, &medianValue); |
---|
| 1581 | double max = min+valueRangeSize; |
---|
| 1582 | |
---|
| 1583 | double realPrecision = 0; |
---|
| 1584 | |
---|
| 1585 | if(confparams_cpr->errorBoundMode==PSNR) |
---|
| 1586 | { |
---|
| 1587 | confparams_cpr->errorBoundMode = ABS; |
---|
| 1588 | realPrecision = confparams_cpr->absErrBound = computeABSErrBoundFromPSNR(confparams_cpr->psnr, (double)confparams_cpr->predThreshold, valueRangeSize); |
---|
| 1589 | } |
---|
| 1590 | else |
---|
| 1591 | realPrecision = getRealPrecision_double(valueRangeSize, errBoundMode, absErr_Bound, relBoundRatio, &status); |
---|
| 1592 | |
---|
| 1593 | if(valueRangeSize <= realPrecision) |
---|
| 1594 | { |
---|
| 1595 | SZ_compress_args_double_withinRange(newByteData, oriData, dataLength, outSize); |
---|
| 1596 | } |
---|
| 1597 | else |
---|
| 1598 | { |
---|
| 1599 | size_t tmpOutSize = 0; |
---|
| 1600 | unsigned char* tmpByteData; |
---|
| 1601 | if (r2==0) |
---|
| 1602 | { |
---|
| 1603 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
| 1604 | { |
---|
[9ee2ce3] | 1605 | SZ_compress_args_double_NoCkRngeNoGzip_1D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r1, &tmpOutSize, min, max); |
---|
| 1606 | //SZ_compress_args_double_NoCkRngeNoGzip_1D_pwrgroup(&tmpByteData, oriData, r1, absErr_Bound, relBoundRatio, pwRelBoundRatio, valueRangeSize, medianValue, &tmpOutSize); |
---|
[2c47b73] | 1607 | } |
---|
| 1608 | else |
---|
| 1609 | #ifdef HAVE_TIMECMPR |
---|
[9ee2ce3] | 1610 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
[2c47b73] | 1611 | multisteps->compressionType = SZ_compress_args_double_NoCkRngeNoGzip_1D(&tmpByteData, oriData, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1612 | else |
---|
| 1613 | #endif |
---|
| 1614 | SZ_compress_args_double_NoCkRngeNoGzip_1D(&tmpByteData, oriData, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1615 | } |
---|
| 1616 | else |
---|
| 1617 | if (r3==0) |
---|
| 1618 | { |
---|
| 1619 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
[9ee2ce3] | 1620 | SZ_compress_args_double_NoCkRngeNoGzip_2D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r2, r1, &tmpOutSize, min, max); |
---|
[2c47b73] | 1621 | else |
---|
| 1622 | #ifdef HAVE_TIMECMPR |
---|
| 1623 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1624 | multisteps->compressionType = SZ_compress_args_double_NoCkRngeNoGzip_2D(&tmpByteData, oriData, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1625 | else |
---|
| 1626 | #endif |
---|
[9ee2ce3] | 1627 | { |
---|
| 1628 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
| 1629 | SZ_compress_args_double_NoCkRngeNoGzip_2D(&tmpByteData, oriData, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1630 | else |
---|
| 1631 | tmpByteData = SZ_compress_double_2D_MDQ_nonblocked_with_blocked_regression(oriData, r2, r1, realPrecision, &tmpOutSize); |
---|
| 1632 | } |
---|
[2c47b73] | 1633 | } |
---|
| 1634 | else |
---|
| 1635 | if (r4==0) |
---|
| 1636 | { |
---|
| 1637 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
[9ee2ce3] | 1638 | SZ_compress_args_double_NoCkRngeNoGzip_3D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r3, r2, r1, &tmpOutSize, min, max); |
---|
[2c47b73] | 1639 | else |
---|
| 1640 | #ifdef HAVE_TIMECMPR |
---|
| 1641 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1642 | multisteps->compressionType = SZ_compress_args_double_NoCkRngeNoGzip_3D(&tmpByteData, oriData, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1643 | else |
---|
| 1644 | #endif |
---|
[9ee2ce3] | 1645 | { |
---|
| 1646 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
| 1647 | SZ_compress_args_double_NoCkRngeNoGzip_3D(&tmpByteData, oriData, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1648 | else |
---|
| 1649 | tmpByteData = SZ_compress_double_3D_MDQ_nonblocked_with_blocked_regression(oriData, r3, r2, r1, realPrecision, &tmpOutSize); |
---|
| 1650 | } |
---|
| 1651 | |
---|
| 1652 | |
---|
[2c47b73] | 1653 | } |
---|
| 1654 | else |
---|
| 1655 | if (r5==0) |
---|
| 1656 | { |
---|
| 1657 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
[9ee2ce3] | 1658 | SZ_compress_args_double_NoCkRngeNoGzip_3D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r4*r3, r2, r1, &tmpOutSize, min, max); |
---|
[2c47b73] | 1659 | else |
---|
| 1660 | #ifdef HAVE_TIMECMPR |
---|
| 1661 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1662 | multisteps->compressionType = SZ_compress_args_double_NoCkRngeNoGzip_4D(&tmpByteData, oriData, r4, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1663 | else |
---|
[9ee2ce3] | 1664 | #endif |
---|
| 1665 | { |
---|
| 1666 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
| 1667 | SZ_compress_args_double_NoCkRngeNoGzip_4D(&tmpByteData, oriData, r4, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1668 | else |
---|
| 1669 | tmpByteData = SZ_compress_double_3D_MDQ_nonblocked_with_blocked_regression(oriData, r4*r3, r2, r1, realPrecision, &tmpOutSize); |
---|
| 1670 | } |
---|
| 1671 | |
---|
[2c47b73] | 1672 | } |
---|
| 1673 | else |
---|
| 1674 | { |
---|
| 1675 | printf("Error: doesn't support 5 dimensions for now.\n"); |
---|
| 1676 | status = SZ_DERR; |
---|
| 1677 | } |
---|
| 1678 | |
---|
| 1679 | //Call Gzip to do the further compression. |
---|
| 1680 | if(confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
| 1681 | { |
---|
| 1682 | *outSize = tmpOutSize; |
---|
| 1683 | *newByteData = tmpByteData; |
---|
| 1684 | } |
---|
| 1685 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
| 1686 | { |
---|
[9ee2ce3] | 1687 | *outSize = sz_lossless_compress(confparams_cpr->losslessCompressor, confparams_cpr->gzipMode, tmpByteData, tmpOutSize, newByteData); |
---|
[2c47b73] | 1688 | free(tmpByteData); |
---|
| 1689 | } |
---|
| 1690 | else |
---|
| 1691 | { |
---|
| 1692 | printf("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
| 1693 | status = SZ_MERR; |
---|
| 1694 | } |
---|
| 1695 | } |
---|
| 1696 | |
---|
| 1697 | return status; |
---|
| 1698 | } |
---|
| 1699 | |
---|
| 1700 | //TODO |
---|
| 1701 | int SZ_compress_args_double_subblock(unsigned char* compressedBytes, double *oriData, |
---|
| 1702 | size_t r5, size_t r4, size_t r3, size_t r2, size_t r1, |
---|
| 1703 | size_t s5, size_t s4, size_t s3, size_t s2, size_t s1, |
---|
| 1704 | size_t e5, size_t e4, size_t e3, size_t e2, size_t e1, |
---|
| 1705 | size_t *outSize, int errBoundMode, double absErr_Bound, double relBoundRatio) |
---|
| 1706 | { |
---|
| 1707 | int status = SZ_SCES; |
---|
| 1708 | double valueRangeSize = 0, medianValue = 0; |
---|
| 1709 | computeRangeSize_double_subblock(oriData, &valueRangeSize, &medianValue, r5, r4, r3, r2, r1, s5, s4, s3, s2, s1, e5, e4, e3, e2, e1); |
---|
| 1710 | |
---|
| 1711 | double realPrecision = getRealPrecision_double(valueRangeSize, errBoundMode, absErr_Bound, relBoundRatio, &status); |
---|
| 1712 | |
---|
| 1713 | if(valueRangeSize <= realPrecision) |
---|
| 1714 | { |
---|
| 1715 | //TODO |
---|
| 1716 | //SZ_compress_args_double_withinRange_subblock(); |
---|
| 1717 | } |
---|
| 1718 | else |
---|
| 1719 | { |
---|
| 1720 | if (r2==0) |
---|
| 1721 | { |
---|
| 1722 | //TODO |
---|
| 1723 | if(errBoundMode==PW_REL) |
---|
| 1724 | { |
---|
| 1725 | //TODO |
---|
| 1726 | //SZ_compress_args_double_NoCkRngeNoGzip_1D_pwr_subblock(); |
---|
| 1727 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
| 1728 | } |
---|
| 1729 | else |
---|
| 1730 | SZ_compress_args_double_NoCkRnge_1D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r1, s1, e1); |
---|
| 1731 | } |
---|
| 1732 | else |
---|
| 1733 | if (r3==0) |
---|
| 1734 | { |
---|
| 1735 | if(errBoundMode==PW_REL) |
---|
| 1736 | { |
---|
| 1737 | //TODO |
---|
| 1738 | //SZ_compress_args_double_NoCkRngeNoGzip_2D_pwr_subblock(); |
---|
| 1739 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
| 1740 | } |
---|
| 1741 | else |
---|
| 1742 | SZ_compress_args_double_NoCkRnge_2D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r2, r1, s2, s1, e2, e1); |
---|
| 1743 | } |
---|
| 1744 | else |
---|
| 1745 | if (r4==0) |
---|
| 1746 | { |
---|
| 1747 | if(errBoundMode==PW_REL) |
---|
| 1748 | { |
---|
| 1749 | //TODO |
---|
| 1750 | //SZ_compress_args_double_NoCkRngeNoGzip_3D_pwr_subblock(); |
---|
| 1751 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
| 1752 | } |
---|
| 1753 | else |
---|
| 1754 | SZ_compress_args_double_NoCkRnge_3D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r3, r2, r1, s3, s2, s1, e3, e2, e1); |
---|
| 1755 | } |
---|
| 1756 | else |
---|
| 1757 | if (r5==0) |
---|
| 1758 | { |
---|
| 1759 | if(errBoundMode==PW_REL) |
---|
| 1760 | { |
---|
| 1761 | //TODO |
---|
| 1762 | //SZ_compress_args_double_NoCkRngeNoGzip_4D_pwr_subblock(); |
---|
| 1763 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
| 1764 | } |
---|
| 1765 | else |
---|
| 1766 | SZ_compress_args_double_NoCkRnge_4D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r4, r3, r2, r1, s4, s3, s2, s1, e4, e3, e2, e1); |
---|
| 1767 | } |
---|
| 1768 | else |
---|
| 1769 | { |
---|
| 1770 | printf("Error: doesn't support 5 dimensions for now.\n"); |
---|
| 1771 | status = SZ_DERR; //dimension error |
---|
| 1772 | } |
---|
| 1773 | } |
---|
| 1774 | return status; |
---|
| 1775 | } |
---|
| 1776 | |
---|
| 1777 | void SZ_compress_args_double_NoCkRnge_1D_subblock(unsigned char* compressedBytes, double *oriData, double realPrecision, size_t *outSize, double valueRangeSize, double medianValue_d, |
---|
| 1778 | size_t r1, size_t s1, size_t e1) |
---|
| 1779 | { |
---|
| 1780 | TightDataPointStorageD* tdps = SZ_compress_double_1D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_d, r1, s1, e1); |
---|
| 1781 | |
---|
| 1782 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
| 1783 | convertTDPStoFlatBytes_double_args(tdps, compressedBytes, outSize); |
---|
| 1784 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
| 1785 | { |
---|
| 1786 | unsigned char *tmpCompBytes; |
---|
| 1787 | size_t tmpOutSize; |
---|
| 1788 | convertTDPStoFlatBytes_double(tdps, &tmpCompBytes, &tmpOutSize); |
---|
| 1789 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
| 1790 | free(tmpCompBytes); |
---|
| 1791 | } |
---|
| 1792 | else |
---|
| 1793 | { |
---|
| 1794 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
| 1795 | } |
---|
| 1796 | |
---|
| 1797 | //TODO |
---|
| 1798 | // if(*outSize>dataLength*sizeof(double)) |
---|
| 1799 | // SZ_compress_args_double_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 1800 | |
---|
| 1801 | free_TightDataPointStorageD(tdps); |
---|
| 1802 | } |
---|
| 1803 | |
---|
| 1804 | void SZ_compress_args_double_NoCkRnge_2D_subblock(unsigned char* compressedBytes, double *oriData, double realPrecision, size_t *outSize, double valueRangeSize, double medianValue_d, |
---|
| 1805 | size_t r2, size_t r1, size_t s2, size_t s1, size_t e2, size_t e1) |
---|
| 1806 | { |
---|
| 1807 | TightDataPointStorageD* tdps = SZ_compress_double_2D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_d, r2, r1, s2, s1, e2, e1); |
---|
| 1808 | |
---|
| 1809 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
| 1810 | convertTDPStoFlatBytes_double_args(tdps, compressedBytes, outSize); |
---|
| 1811 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
| 1812 | { |
---|
| 1813 | unsigned char *tmpCompBytes; |
---|
| 1814 | size_t tmpOutSize; |
---|
| 1815 | convertTDPStoFlatBytes_double(tdps, &tmpCompBytes, &tmpOutSize); |
---|
| 1816 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
| 1817 | free(tmpCompBytes); |
---|
| 1818 | } |
---|
| 1819 | else |
---|
| 1820 | { |
---|
| 1821 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
| 1822 | } |
---|
| 1823 | |
---|
| 1824 | //TODO |
---|
| 1825 | // if(*outSize>dataLength*sizeof(double)) |
---|
| 1826 | // SZ_compress_args_double_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 1827 | |
---|
| 1828 | free_TightDataPointStorageD(tdps); |
---|
| 1829 | } |
---|
| 1830 | |
---|
| 1831 | void SZ_compress_args_double_NoCkRnge_3D_subblock(unsigned char* compressedBytes, double *oriData, double realPrecision, size_t *outSize, double valueRangeSize, double medianValue_d, |
---|
| 1832 | size_t r3, size_t r2, size_t r1, size_t s3, size_t s2, size_t s1, size_t e3, size_t e2, size_t e1) |
---|
| 1833 | { |
---|
| 1834 | TightDataPointStorageD* tdps = SZ_compress_double_3D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_d, r3, r2, r1, s3, s2, s1, e3, e2, e1); |
---|
| 1835 | |
---|
| 1836 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
| 1837 | convertTDPStoFlatBytes_double_args(tdps, compressedBytes, outSize); |
---|
| 1838 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
| 1839 | { |
---|
| 1840 | unsigned char *tmpCompBytes; |
---|
| 1841 | size_t tmpOutSize; |
---|
| 1842 | convertTDPStoFlatBytes_double(tdps, &tmpCompBytes, &tmpOutSize); |
---|
| 1843 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
| 1844 | free(tmpCompBytes); |
---|
| 1845 | } |
---|
| 1846 | else |
---|
| 1847 | { |
---|
| 1848 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
| 1849 | } |
---|
| 1850 | |
---|
| 1851 | //TODO |
---|
| 1852 | // if(*outSize>dataLength*sizeof(double)) |
---|
| 1853 | // SZ_compress_args_double_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 1854 | |
---|
| 1855 | free_TightDataPointStorageD(tdps); |
---|
| 1856 | } |
---|
| 1857 | |
---|
| 1858 | void SZ_compress_args_double_NoCkRnge_4D_subblock(unsigned char* compressedBytes, double *oriData, double realPrecision, size_t *outSize, double valueRangeSize, double medianValue_d, |
---|
| 1859 | size_t r4, size_t r3, size_t r2, size_t r1, size_t s4, size_t s3, size_t s2, size_t s1, size_t e4, size_t e3, size_t e2, size_t e1) |
---|
| 1860 | { |
---|
| 1861 | TightDataPointStorageD* tdps = SZ_compress_double_4D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_d, r4, r3, r2, r1, s4, s3, s2, s1, e4, e3, e2, e1); |
---|
| 1862 | |
---|
| 1863 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
| 1864 | convertTDPStoFlatBytes_double_args(tdps, compressedBytes, outSize); |
---|
| 1865 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
| 1866 | { |
---|
| 1867 | unsigned char *tmpCompBytes; |
---|
| 1868 | size_t tmpOutSize; |
---|
| 1869 | convertTDPStoFlatBytes_double(tdps, &tmpCompBytes, &tmpOutSize); |
---|
| 1870 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
| 1871 | free(tmpCompBytes); |
---|
| 1872 | } |
---|
| 1873 | else |
---|
| 1874 | { |
---|
| 1875 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
| 1876 | } |
---|
| 1877 | |
---|
| 1878 | //TODO |
---|
| 1879 | // if(*outSize>dataLength*sizeof(double)) |
---|
| 1880 | // SZ_compress_args_double_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 1881 | |
---|
| 1882 | free_TightDataPointStorageD(tdps); |
---|
| 1883 | } |
---|
| 1884 | |
---|
| 1885 | |
---|
| 1886 | unsigned int optimize_intervals_double_1D_subblock(double *oriData, double realPrecision, size_t r1, size_t s1, size_t e1) |
---|
| 1887 | { |
---|
| 1888 | size_t dataLength = e1 - s1 + 1; |
---|
| 1889 | oriData = oriData + s1; |
---|
| 1890 | |
---|
| 1891 | size_t i = 0; |
---|
| 1892 | unsigned long radiusIndex; |
---|
| 1893 | double pred_value = 0, pred_err; |
---|
| 1894 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 1895 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 1896 | size_t totalSampleSize = dataLength/confparams_cpr->sampleDistance; |
---|
| 1897 | for(i=2;i<dataLength;i++) |
---|
| 1898 | { |
---|
| 1899 | if(i%confparams_cpr->sampleDistance==0) |
---|
| 1900 | { |
---|
| 1901 | pred_value = 2*oriData[i-1] - oriData[i-2]; |
---|
| 1902 | //pred_value = oriData[i-1]; |
---|
| 1903 | pred_err = fabs(pred_value - oriData[i]); |
---|
| 1904 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 1905 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 1906 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 1907 | intervals[radiusIndex]++; |
---|
| 1908 | } |
---|
| 1909 | } |
---|
| 1910 | //compute the appropriate number |
---|
| 1911 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 1912 | size_t sum = 0; |
---|
| 1913 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 1914 | { |
---|
| 1915 | sum += intervals[i]; |
---|
| 1916 | if(sum>targetCount) |
---|
| 1917 | break; |
---|
| 1918 | } |
---|
| 1919 | |
---|
| 1920 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 1921 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 1922 | unsigned int accIntervals = 2*(i+1); |
---|
| 1923 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 1924 | |
---|
| 1925 | if(powerOf2<32) |
---|
| 1926 | powerOf2 = 32; |
---|
| 1927 | |
---|
| 1928 | free(intervals); |
---|
| 1929 | return powerOf2; |
---|
| 1930 | } |
---|
| 1931 | |
---|
| 1932 | unsigned int optimize_intervals_double_2D_subblock(double *oriData, double realPrecision, size_t r1, size_t r2, size_t s1, size_t s2, size_t e1, size_t e2) |
---|
| 1933 | { |
---|
| 1934 | size_t R1 = e1 - s1 + 1; |
---|
| 1935 | size_t R2 = e2 - s2 + 1; |
---|
| 1936 | |
---|
| 1937 | size_t i,j, index; |
---|
| 1938 | unsigned long radiusIndex; |
---|
| 1939 | double pred_value = 0, pred_err; |
---|
| 1940 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 1941 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 1942 | size_t totalSampleSize = R1*R2/confparams_cpr->sampleDistance; |
---|
| 1943 | for(i=s1+1;i<=e1;i++) |
---|
| 1944 | { |
---|
| 1945 | for(j=s2+1;j<=e2;j++) |
---|
| 1946 | { |
---|
| 1947 | if((i+j)%confparams_cpr->sampleDistance==0) |
---|
| 1948 | { |
---|
| 1949 | index = i*r2+j; |
---|
| 1950 | pred_value = oriData[index-1] + oriData[index-r2] - oriData[index-r2-1]; |
---|
| 1951 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 1952 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 1953 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 1954 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 1955 | intervals[radiusIndex]++; |
---|
| 1956 | } |
---|
| 1957 | } |
---|
| 1958 | } |
---|
| 1959 | //compute the appropriate number |
---|
| 1960 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 1961 | size_t sum = 0; |
---|
| 1962 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 1963 | { |
---|
| 1964 | sum += intervals[i]; |
---|
| 1965 | if(sum>targetCount) |
---|
| 1966 | break; |
---|
| 1967 | } |
---|
| 1968 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 1969 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 1970 | unsigned int accIntervals = 2*(i+1); |
---|
| 1971 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 1972 | |
---|
| 1973 | if(powerOf2<32) |
---|
| 1974 | powerOf2 = 32; |
---|
| 1975 | |
---|
| 1976 | free(intervals); |
---|
| 1977 | return powerOf2; |
---|
| 1978 | } |
---|
| 1979 | |
---|
| 1980 | unsigned int optimize_intervals_double_3D_subblock(double *oriData, double realPrecision, size_t r1, size_t r2, size_t r3, size_t s1, size_t s2, size_t s3, size_t e1, size_t e2, size_t e3) |
---|
| 1981 | { |
---|
| 1982 | size_t R1 = e1 - s1 + 1; |
---|
| 1983 | size_t R2 = e2 - s2 + 1; |
---|
| 1984 | size_t R3 = e3 - s3 + 1; |
---|
| 1985 | |
---|
| 1986 | size_t r23 = r2*r3; |
---|
| 1987 | |
---|
| 1988 | size_t i,j,k, index; |
---|
| 1989 | unsigned long radiusIndex; |
---|
| 1990 | double pred_value = 0, pred_err; |
---|
| 1991 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 1992 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 1993 | size_t totalSampleSize = R1*R2*R3/confparams_cpr->sampleDistance; |
---|
| 1994 | for(i=s1+1;i<=e1;i++) |
---|
| 1995 | { |
---|
| 1996 | for(j=s2+1;j<=e2;j++) |
---|
| 1997 | { |
---|
| 1998 | for(k=s3+1;k<=e3;k++) |
---|
| 1999 | { |
---|
| 2000 | if((i+j+k)%confparams_cpr->sampleDistance==0) |
---|
| 2001 | { |
---|
| 2002 | index = i*r23+j*r3+k; |
---|
| 2003 | pred_value = oriData[index-1] + oriData[index-r3] + oriData[index-r23] |
---|
| 2004 | - oriData[index-1-r23] - oriData[index-r3-1] - oriData[index-r3-r23] + oriData[index-r3-r23-1]; |
---|
| 2005 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 2006 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 2007 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 2008 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 2009 | intervals[radiusIndex]++; |
---|
| 2010 | } |
---|
| 2011 | } |
---|
| 2012 | |
---|
| 2013 | } |
---|
| 2014 | } |
---|
| 2015 | //compute the appropriate number |
---|
| 2016 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 2017 | size_t sum = 0; |
---|
| 2018 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 2019 | { |
---|
| 2020 | sum += intervals[i]; |
---|
| 2021 | if(sum>targetCount) |
---|
| 2022 | break; |
---|
| 2023 | } |
---|
| 2024 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 2025 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 2026 | |
---|
| 2027 | unsigned int accIntervals = 2*(i+1); |
---|
| 2028 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 2029 | |
---|
| 2030 | if(powerOf2<32) |
---|
| 2031 | powerOf2 = 32; |
---|
| 2032 | |
---|
| 2033 | free(intervals); |
---|
| 2034 | return powerOf2; |
---|
| 2035 | } |
---|
| 2036 | |
---|
| 2037 | unsigned int optimize_intervals_double_4D_subblock(double *oriData, double realPrecision, |
---|
| 2038 | size_t r1, size_t r2, size_t r3, size_t r4, size_t s1, size_t s2, size_t s3, size_t s4, size_t e1, size_t e2, size_t e3, size_t e4) |
---|
| 2039 | { |
---|
| 2040 | size_t R1 = e1 - s1 + 1; |
---|
| 2041 | size_t R2 = e2 - s2 + 1; |
---|
| 2042 | size_t R3 = e3 - s3 + 1; |
---|
| 2043 | size_t R4 = e4 - s4 + 1; |
---|
| 2044 | |
---|
| 2045 | size_t r34 = r3*r4; |
---|
| 2046 | size_t r234 = r2*r3*r4; |
---|
| 2047 | |
---|
| 2048 | size_t i,j,k,l, index; |
---|
| 2049 | unsigned long radiusIndex; |
---|
| 2050 | double pred_value = 0, pred_err; |
---|
| 2051 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 2052 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 2053 | size_t totalSampleSize = R1*R2*R3*R4/confparams_cpr->sampleDistance; |
---|
| 2054 | for(i=s1+1;i<=e1;i++) |
---|
| 2055 | { |
---|
| 2056 | for(j=s2+1;j<=e2;j++) |
---|
| 2057 | { |
---|
| 2058 | for(k=s3+1;k<=e3;k++) |
---|
| 2059 | { |
---|
| 2060 | for(l=s4+1;l<=e4;l++) |
---|
| 2061 | { |
---|
| 2062 | if((i+j+k+l)%confparams_cpr->sampleDistance==0) |
---|
| 2063 | { |
---|
| 2064 | index = i*r234+j*r34+k*r4+l; |
---|
| 2065 | pred_value = oriData[index-1] + oriData[index-r4] + oriData[index-r34] |
---|
| 2066 | - oriData[index-1-r34] - oriData[index-r4-1] - oriData[index-r4-r34] + oriData[index-r4-r34-1]; |
---|
| 2067 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 2068 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 2069 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 2070 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 2071 | intervals[radiusIndex]++; |
---|
| 2072 | } |
---|
| 2073 | } |
---|
| 2074 | } |
---|
| 2075 | |
---|
| 2076 | } |
---|
| 2077 | } |
---|
| 2078 | //compute the appropriate number |
---|
| 2079 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 2080 | size_t sum = 0; |
---|
| 2081 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 2082 | { |
---|
| 2083 | sum += intervals[i]; |
---|
| 2084 | if(sum>targetCount) |
---|
| 2085 | break; |
---|
| 2086 | } |
---|
| 2087 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 2088 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 2089 | |
---|
| 2090 | unsigned int accIntervals = 2*(i+1); |
---|
| 2091 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 2092 | |
---|
| 2093 | if(powerOf2<32) |
---|
| 2094 | powerOf2 = 32; |
---|
| 2095 | |
---|
| 2096 | free(intervals); |
---|
| 2097 | return powerOf2; |
---|
| 2098 | } |
---|
| 2099 | |
---|
| 2100 | TightDataPointStorageD* SZ_compress_double_1D_MDQ_subblock(double *oriData, double realPrecision, double valueRangeSize, double medianValue_d, |
---|
| 2101 | size_t r1, size_t s1, size_t e1) |
---|
| 2102 | { |
---|
| 2103 | size_t dataLength = e1 - s1 + 1; |
---|
| 2104 | |
---|
| 2105 | unsigned int quantization_intervals; |
---|
| 2106 | if(exe_params->optQuantMode==1) |
---|
| 2107 | quantization_intervals = optimize_intervals_double_1D_subblock(oriData, realPrecision, r1, s1, e1); |
---|
| 2108 | else |
---|
| 2109 | quantization_intervals = exe_params->intvCapacity; |
---|
| 2110 | updateQuantizationInfo(quantization_intervals); |
---|
| 2111 | |
---|
| 2112 | size_t i; |
---|
| 2113 | int reqLength; |
---|
| 2114 | double medianValue = medianValue_d; |
---|
| 2115 | short radExpo = getExponent_double(valueRangeSize/2); |
---|
| 2116 | |
---|
| 2117 | computeReqLength_double(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 2118 | |
---|
| 2119 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 2120 | |
---|
| 2121 | double* spaceFillingValue = oriData + s1; // |
---|
| 2122 | |
---|
| 2123 | DynamicIntArray *exactLeadNumArray; |
---|
| 2124 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 2125 | |
---|
| 2126 | DynamicByteArray *exactMidByteArray; |
---|
| 2127 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 2128 | |
---|
| 2129 | DynamicIntArray *resiBitArray; |
---|
| 2130 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 2131 | |
---|
| 2132 | type[0] = 0; |
---|
| 2133 | |
---|
| 2134 | unsigned char preDataBytes[8]; |
---|
| 2135 | longToBytes_bigEndian(preDataBytes, 0); |
---|
| 2136 | |
---|
| 2137 | int reqBytesLength = reqLength/8; |
---|
| 2138 | int resiBitsLength = reqLength%8; |
---|
| 2139 | double last3CmprsData[3] = {0}; |
---|
| 2140 | |
---|
| 2141 | DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement)); |
---|
| 2142 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 2143 | |
---|
| 2144 | //add the first data |
---|
| 2145 | compressSingleDoubleValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2146 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2147 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2148 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2149 | listAdd_double(last3CmprsData, vce->data); |
---|
| 2150 | |
---|
| 2151 | //add the second data |
---|
| 2152 | type[1] = 0; |
---|
| 2153 | compressSingleDoubleValue(vce, spaceFillingValue[1], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2154 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2155 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2156 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2157 | listAdd_double(last3CmprsData, vce->data); |
---|
| 2158 | |
---|
| 2159 | int state; |
---|
| 2160 | double checkRadius; |
---|
| 2161 | double curData; |
---|
| 2162 | double pred; |
---|
| 2163 | double predAbsErr; |
---|
| 2164 | checkRadius = (exe_params->intvCapacity-1)*realPrecision; |
---|
| 2165 | double interval = 2*realPrecision; |
---|
| 2166 | |
---|
| 2167 | for(i=2;i<dataLength;i++) |
---|
| 2168 | { |
---|
| 2169 | //printf("%.30G\n",last3CmprsData[0]); |
---|
| 2170 | curData = spaceFillingValue[i]; |
---|
| 2171 | pred = 2*last3CmprsData[0] - last3CmprsData[1]; |
---|
| 2172 | //pred = last3CmprsData[0]; |
---|
| 2173 | predAbsErr = fabs(curData - pred); |
---|
| 2174 | if(predAbsErr<=checkRadius) |
---|
| 2175 | { |
---|
| 2176 | state = (predAbsErr/realPrecision+1)/2; |
---|
| 2177 | if(curData>=pred) |
---|
| 2178 | { |
---|
| 2179 | type[i] = exe_params->intvRadius+state; |
---|
| 2180 | pred = pred + state*interval; |
---|
| 2181 | } |
---|
| 2182 | else //curData<pred |
---|
| 2183 | { |
---|
| 2184 | type[i] = exe_params->intvRadius-state; |
---|
| 2185 | pred = pred - state*interval; |
---|
| 2186 | } |
---|
| 2187 | listAdd_double(last3CmprsData, pred); |
---|
| 2188 | continue; |
---|
| 2189 | } |
---|
| 2190 | |
---|
| 2191 | //unpredictable data processing |
---|
| 2192 | type[i] = 0; |
---|
| 2193 | compressSingleDoubleValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2194 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2195 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2196 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2197 | |
---|
| 2198 | listAdd_double(last3CmprsData, vce->data); |
---|
| 2199 | }//end of for |
---|
| 2200 | |
---|
| 2201 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 2202 | |
---|
| 2203 | TightDataPointStorageD* tdps; |
---|
| 2204 | |
---|
| 2205 | new_TightDataPointStorageD(&tdps, dataLength, exactDataNum, |
---|
| 2206 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 2207 | exactLeadNumArray->array, |
---|
| 2208 | resiBitArray->array, resiBitArray->size, |
---|
| 2209 | resiBitsLength, |
---|
| 2210 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 2211 | |
---|
| 2212 | //free memory |
---|
| 2213 | free_DIA(exactLeadNumArray); |
---|
| 2214 | free_DIA(resiBitArray); |
---|
| 2215 | free(type); |
---|
| 2216 | free(vce); |
---|
| 2217 | free(lce); |
---|
| 2218 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 2219 | |
---|
| 2220 | return tdps; |
---|
| 2221 | } |
---|
| 2222 | |
---|
| 2223 | |
---|
| 2224 | TightDataPointStorageD* SZ_compress_double_2D_MDQ_subblock(double *oriData, double realPrecision, double valueRangeSize, double medianValue_d, |
---|
| 2225 | size_t r1, size_t r2, size_t s1, size_t s2, size_t e1, size_t e2) |
---|
| 2226 | { |
---|
| 2227 | unsigned int quantization_intervals; |
---|
| 2228 | if(exe_params->optQuantMode==1) |
---|
| 2229 | { |
---|
| 2230 | quantization_intervals = optimize_intervals_double_2D_subblock(oriData, realPrecision, r1, r2, s1, s2, e1, e2); |
---|
| 2231 | updateQuantizationInfo(quantization_intervals); |
---|
| 2232 | } |
---|
| 2233 | else |
---|
| 2234 | quantization_intervals = exe_params->intvCapacity; |
---|
| 2235 | |
---|
| 2236 | size_t i,j; |
---|
| 2237 | int reqLength; |
---|
| 2238 | double pred1D, pred2D; |
---|
| 2239 | double diff = 0.0; |
---|
| 2240 | double itvNum = 0; |
---|
| 2241 | double *P0, *P1; |
---|
| 2242 | |
---|
| 2243 | size_t R1 = e1 - s1 + 1; |
---|
| 2244 | size_t R2 = e2 - s2 + 1; |
---|
| 2245 | size_t dataLength = R1*R2; |
---|
| 2246 | |
---|
| 2247 | P0 = (double*)malloc(R2*sizeof(double)); |
---|
| 2248 | memset(P0, 0, R2*sizeof(double)); |
---|
| 2249 | P1 = (double*)malloc(R2*sizeof(double)); |
---|
| 2250 | memset(P1, 0, R2*sizeof(double)); |
---|
| 2251 | |
---|
| 2252 | double medianValue = medianValue_d; |
---|
| 2253 | short radExpo = getExponent_double(valueRangeSize/2); |
---|
| 2254 | computeReqLength_double(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 2255 | |
---|
| 2256 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 2257 | |
---|
| 2258 | double* spaceFillingValue = oriData; // |
---|
| 2259 | |
---|
| 2260 | DynamicIntArray *exactLeadNumArray; |
---|
| 2261 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 2262 | |
---|
| 2263 | DynamicByteArray *exactMidByteArray; |
---|
| 2264 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 2265 | |
---|
| 2266 | DynamicIntArray *resiBitArray; |
---|
| 2267 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 2268 | |
---|
| 2269 | unsigned char preDataBytes[8]; |
---|
| 2270 | longToBytes_bigEndian(preDataBytes, 0); |
---|
| 2271 | |
---|
| 2272 | int reqBytesLength = reqLength/8; |
---|
| 2273 | int resiBitsLength = reqLength%8; |
---|
| 2274 | |
---|
| 2275 | DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement)); |
---|
| 2276 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 2277 | |
---|
| 2278 | /* Process Row-s1 data s2*/ |
---|
| 2279 | size_t gIndex; |
---|
| 2280 | size_t lIndex; |
---|
| 2281 | |
---|
| 2282 | gIndex = s1*r2+s2; |
---|
| 2283 | lIndex = 0; |
---|
| 2284 | |
---|
| 2285 | type[lIndex] = 0; |
---|
| 2286 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2287 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2288 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2289 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2290 | P1[0] = vce->data; |
---|
| 2291 | |
---|
| 2292 | /* Process Row-s1 data s2+1*/ |
---|
| 2293 | gIndex = s1*r2+(s2+1); |
---|
| 2294 | lIndex = 1; |
---|
| 2295 | |
---|
| 2296 | pred1D = P1[0]; |
---|
| 2297 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2298 | |
---|
| 2299 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2300 | |
---|
| 2301 | if (itvNum < exe_params->intvCapacity) |
---|
| 2302 | { |
---|
| 2303 | if (diff < 0) itvNum = -itvNum; |
---|
| 2304 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2305 | P1[1] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2306 | } |
---|
| 2307 | else |
---|
| 2308 | { |
---|
| 2309 | type[lIndex] = 0; |
---|
| 2310 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2311 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2312 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2313 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2314 | P1[1] = vce->data; |
---|
| 2315 | } |
---|
| 2316 | |
---|
| 2317 | /* Process Row-s1 data s2+2 --> data e2 */ |
---|
| 2318 | for (j = 2; j < R2; j++) |
---|
| 2319 | { |
---|
| 2320 | gIndex = s1*r2+(s2+j); |
---|
| 2321 | lIndex = j; |
---|
| 2322 | |
---|
| 2323 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
| 2324 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2325 | |
---|
| 2326 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2327 | |
---|
| 2328 | if (itvNum < exe_params->intvCapacity) |
---|
| 2329 | { |
---|
| 2330 | if (diff < 0) itvNum = -itvNum; |
---|
| 2331 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2332 | P1[j] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2333 | } |
---|
| 2334 | else |
---|
| 2335 | { |
---|
| 2336 | type[lIndex] = 0; |
---|
| 2337 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2338 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2339 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2340 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2341 | P1[j] = vce->data; |
---|
| 2342 | } |
---|
| 2343 | } |
---|
| 2344 | |
---|
| 2345 | /* Process Row-s1+1 --> Row-e1 */ |
---|
| 2346 | for (i = 1; i < R1; i++) |
---|
| 2347 | { |
---|
| 2348 | /* Process row-s1+i data s2 */ |
---|
| 2349 | gIndex = (s1+i)*r2+s2; |
---|
| 2350 | lIndex = i*R2; |
---|
| 2351 | |
---|
| 2352 | pred1D = P1[0]; |
---|
| 2353 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2354 | |
---|
| 2355 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2356 | |
---|
| 2357 | if (itvNum < exe_params->intvCapacity) |
---|
| 2358 | { |
---|
| 2359 | if (diff < 0) itvNum = -itvNum; |
---|
| 2360 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2361 | P0[0] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2362 | } |
---|
| 2363 | else |
---|
| 2364 | { |
---|
| 2365 | type[lIndex] = 0; |
---|
| 2366 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2367 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2368 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2369 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2370 | P0[0] = vce->data; |
---|
| 2371 | } |
---|
| 2372 | |
---|
| 2373 | /* Process row-s1+i data s2+1 --> e2 */ |
---|
| 2374 | for (j = 1; j < R2; j++) |
---|
| 2375 | { |
---|
| 2376 | gIndex = (s1+i)*r2+(s2+j); |
---|
| 2377 | lIndex = i*R2+j; |
---|
| 2378 | |
---|
| 2379 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
| 2380 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 2381 | |
---|
| 2382 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2383 | |
---|
| 2384 | if (itvNum < exe_params->intvCapacity) |
---|
| 2385 | { |
---|
| 2386 | if (diff < 0) itvNum = -itvNum; |
---|
| 2387 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2388 | P0[j] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2389 | } |
---|
| 2390 | else |
---|
| 2391 | { |
---|
| 2392 | type[lIndex] = 0; |
---|
| 2393 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2394 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2395 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2396 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2397 | P0[j] = vce->data; |
---|
| 2398 | } |
---|
| 2399 | } |
---|
| 2400 | |
---|
| 2401 | double *Pt; |
---|
| 2402 | Pt = P1; |
---|
| 2403 | P1 = P0; |
---|
| 2404 | P0 = Pt; |
---|
| 2405 | } |
---|
| 2406 | |
---|
| 2407 | free(P0); |
---|
| 2408 | free(P1); |
---|
| 2409 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 2410 | |
---|
| 2411 | TightDataPointStorageD* tdps; |
---|
| 2412 | |
---|
| 2413 | new_TightDataPointStorageD(&tdps, dataLength, exactDataNum, |
---|
| 2414 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 2415 | exactLeadNumArray->array, |
---|
| 2416 | resiBitArray->array, resiBitArray->size, |
---|
| 2417 | resiBitsLength, |
---|
| 2418 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 2419 | |
---|
| 2420 | //free memory |
---|
| 2421 | free_DIA(exactLeadNumArray); |
---|
| 2422 | free_DIA(resiBitArray); |
---|
| 2423 | free(type); |
---|
| 2424 | free(vce); |
---|
| 2425 | free(lce); |
---|
| 2426 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 2427 | |
---|
| 2428 | return tdps; |
---|
| 2429 | } |
---|
| 2430 | |
---|
| 2431 | TightDataPointStorageD* SZ_compress_double_3D_MDQ_subblock(double *oriData, double realPrecision, double valueRangeSize, double medianValue_d, |
---|
| 2432 | size_t r1, size_t r2, size_t r3, size_t s1, size_t s2, size_t s3, size_t e1, size_t e2, size_t e3) |
---|
| 2433 | { |
---|
| 2434 | unsigned int quantization_intervals; |
---|
| 2435 | if(exe_params->optQuantMode==1) |
---|
| 2436 | { |
---|
| 2437 | quantization_intervals = optimize_intervals_double_3D_subblock(oriData, realPrecision, r1, r2, r3, s1, s2, s3, e1, e2, e3); |
---|
| 2438 | updateQuantizationInfo(quantization_intervals); |
---|
| 2439 | } |
---|
| 2440 | else |
---|
| 2441 | quantization_intervals = exe_params->intvCapacity; |
---|
| 2442 | |
---|
| 2443 | size_t i,j,k; |
---|
| 2444 | int reqLength; |
---|
| 2445 | double pred1D, pred2D, pred3D; |
---|
| 2446 | double diff = 0.0; |
---|
| 2447 | double itvNum = 0; |
---|
| 2448 | double *P0, *P1; |
---|
| 2449 | |
---|
| 2450 | size_t R1 = e1 - s1 + 1; |
---|
| 2451 | size_t R2 = e2 - s2 + 1; |
---|
| 2452 | size_t R3 = e3 - s3 + 1; |
---|
| 2453 | size_t dataLength = R1*R2*R3; |
---|
| 2454 | |
---|
| 2455 | size_t r23 = r2*r3; |
---|
| 2456 | size_t R23 = R2*R3; |
---|
| 2457 | |
---|
| 2458 | P0 = (double*)malloc(R23*sizeof(double)); |
---|
| 2459 | P1 = (double*)malloc(R23*sizeof(double)); |
---|
| 2460 | |
---|
| 2461 | double medianValue = medianValue_d; |
---|
| 2462 | short radExpo = getExponent_double(valueRangeSize/2); |
---|
| 2463 | computeReqLength_double(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 2464 | |
---|
| 2465 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 2466 | |
---|
| 2467 | double* spaceFillingValue = oriData; // |
---|
| 2468 | |
---|
| 2469 | DynamicIntArray *exactLeadNumArray; |
---|
| 2470 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 2471 | |
---|
| 2472 | DynamicByteArray *exactMidByteArray; |
---|
| 2473 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 2474 | |
---|
| 2475 | DynamicIntArray *resiBitArray; |
---|
| 2476 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 2477 | |
---|
| 2478 | unsigned char preDataBytes[8]; |
---|
| 2479 | longToBytes_bigEndian(preDataBytes, 0); |
---|
| 2480 | |
---|
| 2481 | int reqBytesLength = reqLength/8; |
---|
| 2482 | int resiBitsLength = reqLength%8; |
---|
| 2483 | |
---|
| 2484 | DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement)); |
---|
| 2485 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 2486 | |
---|
| 2487 | |
---|
| 2488 | /////////////////////////// Process layer-s1 /////////////////////////// |
---|
| 2489 | /* Process Row-s2 data s3*/ |
---|
| 2490 | size_t gIndex; //global index |
---|
| 2491 | size_t lIndex; //local index |
---|
| 2492 | size_t index2D; //local 2D index |
---|
| 2493 | |
---|
| 2494 | gIndex = s1*r23+s2*r3+s3; |
---|
| 2495 | lIndex = 0; |
---|
| 2496 | index2D = 0; |
---|
| 2497 | |
---|
| 2498 | type[lIndex] = 0; |
---|
| 2499 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2500 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2501 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2502 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2503 | P1[index2D] = vce->data; |
---|
| 2504 | |
---|
| 2505 | /* Process Row-s2 data s3+1*/ |
---|
| 2506 | gIndex = s1*r23+s2*r3+s3+1; |
---|
| 2507 | lIndex = 1; |
---|
| 2508 | index2D = 1; |
---|
| 2509 | |
---|
| 2510 | pred1D = P1[index2D-1]; |
---|
| 2511 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2512 | |
---|
| 2513 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2514 | |
---|
| 2515 | if (itvNum < exe_params->intvCapacity) |
---|
| 2516 | { |
---|
| 2517 | if (diff < 0) itvNum = -itvNum; |
---|
| 2518 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2519 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2520 | } |
---|
| 2521 | else |
---|
| 2522 | { |
---|
| 2523 | type[lIndex] = 0; |
---|
| 2524 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2525 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2526 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2527 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2528 | P1[index2D] = vce->data; |
---|
| 2529 | } |
---|
| 2530 | |
---|
| 2531 | /* Process Row-s2 data s3+2 --> data e3 */ |
---|
| 2532 | for (j = 2; j < R3; j++) |
---|
| 2533 | { |
---|
| 2534 | gIndex = s1*r23+s2*r3+s3+j; |
---|
| 2535 | lIndex = j; |
---|
| 2536 | index2D = j; |
---|
| 2537 | |
---|
| 2538 | pred1D = 2*P1[index2D-1] - P1[index2D-2]; |
---|
| 2539 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2540 | |
---|
| 2541 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2542 | |
---|
| 2543 | if (itvNum < exe_params->intvCapacity) |
---|
| 2544 | { |
---|
| 2545 | if (diff < 0) itvNum = -itvNum; |
---|
| 2546 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2547 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2548 | } |
---|
| 2549 | else |
---|
| 2550 | { |
---|
| 2551 | type[lIndex] = 0; |
---|
| 2552 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2553 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2554 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2555 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2556 | P1[index2D] = vce->data; |
---|
| 2557 | } |
---|
| 2558 | } |
---|
| 2559 | |
---|
| 2560 | /* Process Row-s2+1 --> Row-e2 */ |
---|
| 2561 | for (i = 1; i < R2; i++) |
---|
| 2562 | { |
---|
| 2563 | /* Process row-s2+i data s3 */ |
---|
| 2564 | gIndex = s1*r23+(s2+i)*r3+s3; |
---|
| 2565 | lIndex = i*R3; |
---|
| 2566 | index2D = i*R3; |
---|
| 2567 | |
---|
| 2568 | pred1D = P1[index2D-R3]; |
---|
| 2569 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2570 | |
---|
| 2571 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2572 | |
---|
| 2573 | if (itvNum < exe_params->intvCapacity) |
---|
| 2574 | { |
---|
| 2575 | if (diff < 0) itvNum = -itvNum; |
---|
| 2576 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2577 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2578 | } |
---|
| 2579 | else |
---|
| 2580 | { |
---|
| 2581 | type[lIndex] = 0; |
---|
| 2582 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2583 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2584 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2585 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2586 | P1[index2D] = vce->data; |
---|
| 2587 | } |
---|
| 2588 | |
---|
| 2589 | /* Process row-s2+i data s3+1 --> data e3*/ |
---|
| 2590 | for (j = 1; j < R3; j++) |
---|
| 2591 | { |
---|
| 2592 | gIndex = s1*r23+(s2+i)*r3+s3+j; |
---|
| 2593 | lIndex = i*R3+j; |
---|
| 2594 | index2D = i*R3+j; |
---|
| 2595 | |
---|
| 2596 | pred2D = P1[index2D-1] + P1[index2D-R3] - P1[index2D-R3-1]; |
---|
| 2597 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 2598 | |
---|
| 2599 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2600 | |
---|
| 2601 | if (itvNum < exe_params->intvCapacity) |
---|
| 2602 | { |
---|
| 2603 | if (diff < 0) itvNum = -itvNum; |
---|
| 2604 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2605 | P1[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2606 | } |
---|
| 2607 | else |
---|
| 2608 | { |
---|
| 2609 | type[lIndex] = 0; |
---|
| 2610 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2611 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2612 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2613 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2614 | P1[index2D] = vce->data; |
---|
| 2615 | } |
---|
| 2616 | } |
---|
| 2617 | } |
---|
| 2618 | |
---|
| 2619 | |
---|
| 2620 | /////////////////////////// Process layer-s1+1 --> layer-e1 /////////////////////////// |
---|
| 2621 | |
---|
| 2622 | for (k = 1; k < R1; k++) |
---|
| 2623 | { |
---|
| 2624 | /* Process Row-s2 data s3*/ |
---|
| 2625 | gIndex = (s1+k)*r23+s2*r3+s3; |
---|
| 2626 | lIndex = k*R23; |
---|
| 2627 | index2D = 0; |
---|
| 2628 | |
---|
| 2629 | pred1D = P1[index2D]; |
---|
| 2630 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2631 | |
---|
| 2632 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2633 | |
---|
| 2634 | if (itvNum < exe_params->intvCapacity) |
---|
| 2635 | { |
---|
| 2636 | if (diff < 0) itvNum = -itvNum; |
---|
| 2637 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2638 | P0[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2639 | } |
---|
| 2640 | else |
---|
| 2641 | { |
---|
| 2642 | type[lIndex] = 0; |
---|
| 2643 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2644 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2645 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2646 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2647 | P0[index2D] = vce->data; |
---|
| 2648 | } |
---|
| 2649 | |
---|
| 2650 | |
---|
| 2651 | /* Process Row-s2 data s3+1 --> data e3 */ |
---|
| 2652 | for (j = 1; j < R3; j++) |
---|
| 2653 | { |
---|
| 2654 | gIndex = (s1+k)*r23+s2*r3+s3+j; |
---|
| 2655 | lIndex = k*R23+j; |
---|
| 2656 | index2D = j; |
---|
| 2657 | |
---|
| 2658 | pred2D = P0[index2D-1] + P1[index2D] - P1[index2D-1]; |
---|
| 2659 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 2660 | |
---|
| 2661 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2662 | |
---|
| 2663 | if (itvNum < exe_params->intvCapacity) |
---|
| 2664 | { |
---|
| 2665 | if (diff < 0) itvNum = -itvNum; |
---|
| 2666 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2667 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2668 | } |
---|
| 2669 | else |
---|
| 2670 | { |
---|
| 2671 | type[lIndex] = 0; |
---|
| 2672 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2673 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2674 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2675 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2676 | P0[index2D] = vce->data; |
---|
| 2677 | } |
---|
| 2678 | } |
---|
| 2679 | |
---|
| 2680 | /* Process Row-s2+1 --> Row-e2 */ |
---|
| 2681 | for (i = 1; i < R2; i++) |
---|
| 2682 | { |
---|
| 2683 | /* Process Row-s2+i data s3 */ |
---|
| 2684 | gIndex = (s1+k)*r23+(s2+i)*r3+s3; |
---|
| 2685 | lIndex = k*R23+i*R3; |
---|
| 2686 | index2D = i*R3; |
---|
| 2687 | |
---|
| 2688 | pred2D = P0[index2D-R3] + P1[index2D] - P1[index2D-R3]; |
---|
| 2689 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 2690 | |
---|
| 2691 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2692 | |
---|
| 2693 | if (itvNum < exe_params->intvCapacity) |
---|
| 2694 | { |
---|
| 2695 | if (diff < 0) itvNum = -itvNum; |
---|
| 2696 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2697 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2698 | } |
---|
| 2699 | else |
---|
| 2700 | { |
---|
| 2701 | type[lIndex] = 0; |
---|
| 2702 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2703 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2704 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2705 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2706 | P0[index2D] = vce->data; |
---|
| 2707 | } |
---|
| 2708 | |
---|
| 2709 | /* Process Row-s2+i data s3+1 --> data e3 */ |
---|
| 2710 | for (j = 1; j < R3; j++) |
---|
| 2711 | { |
---|
| 2712 | gIndex = (s1+k)*r23+(s2+i)*r3+s3+j; |
---|
| 2713 | lIndex = k*R23+i*R3+j; |
---|
| 2714 | index2D = i*R3+j; |
---|
| 2715 | |
---|
| 2716 | pred3D = P0[index2D-1] + P0[index2D-R3]+ P1[index2D] - P0[index2D-R3-1] - P1[index2D-R3] - P1[index2D-1] + P1[index2D-R3-1]; |
---|
| 2717 | diff = spaceFillingValue[gIndex] - pred3D; |
---|
| 2718 | |
---|
| 2719 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2720 | |
---|
| 2721 | if (itvNum < exe_params->intvCapacity) |
---|
| 2722 | { |
---|
| 2723 | if (diff < 0) itvNum = -itvNum; |
---|
| 2724 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2725 | P0[index2D] = pred3D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2726 | } |
---|
| 2727 | else |
---|
| 2728 | { |
---|
| 2729 | type[lIndex] = 0; |
---|
| 2730 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2731 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2732 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2733 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2734 | P0[index2D] = vce->data; |
---|
| 2735 | } |
---|
| 2736 | } |
---|
| 2737 | } |
---|
| 2738 | |
---|
| 2739 | double *Pt; |
---|
| 2740 | Pt = P1; |
---|
| 2741 | P1 = P0; |
---|
| 2742 | P0 = Pt; |
---|
| 2743 | } |
---|
| 2744 | |
---|
| 2745 | free(P0); |
---|
| 2746 | free(P1); |
---|
| 2747 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 2748 | |
---|
| 2749 | TightDataPointStorageD* tdps; |
---|
| 2750 | |
---|
| 2751 | new_TightDataPointStorageD(&tdps, dataLength, exactDataNum, |
---|
| 2752 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 2753 | exactLeadNumArray->array, |
---|
| 2754 | resiBitArray->array, resiBitArray->size, |
---|
| 2755 | resiBitsLength, |
---|
| 2756 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 2757 | |
---|
| 2758 | //free memory |
---|
| 2759 | free_DIA(exactLeadNumArray); |
---|
| 2760 | free_DIA(resiBitArray); |
---|
| 2761 | free(type); |
---|
| 2762 | free(vce); |
---|
| 2763 | free(lce); |
---|
| 2764 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 2765 | |
---|
| 2766 | return tdps; |
---|
| 2767 | } |
---|
| 2768 | |
---|
| 2769 | TightDataPointStorageD* SZ_compress_double_4D_MDQ_subblock(double *oriData, double realPrecision, double valueRangeSize, double medianValue_d, |
---|
| 2770 | size_t r1, size_t r2, size_t r3, size_t r4, size_t s1, size_t s2, size_t s3, size_t s4, size_t e1, size_t e2, size_t e3, size_t e4) |
---|
| 2771 | { |
---|
| 2772 | unsigned int quantization_intervals; |
---|
| 2773 | if(exe_params->optQuantMode==1) |
---|
| 2774 | { |
---|
| 2775 | quantization_intervals = optimize_intervals_double_4D_subblock(oriData, realPrecision, r1, r2, r3, r4, s1, s2, s3, s4, e1, e2, e3, e4); |
---|
| 2776 | updateQuantizationInfo(quantization_intervals); |
---|
| 2777 | } |
---|
| 2778 | else |
---|
| 2779 | quantization_intervals = exe_params->intvCapacity; |
---|
| 2780 | |
---|
| 2781 | size_t i,j,k; |
---|
| 2782 | int reqLength; |
---|
| 2783 | double pred1D, pred2D, pred3D; |
---|
| 2784 | double diff = 0.0; |
---|
| 2785 | double itvNum = 0; |
---|
| 2786 | double *P0, *P1; |
---|
| 2787 | |
---|
| 2788 | size_t R1 = e1 - s1 + 1; |
---|
| 2789 | size_t R2 = e2 - s2 + 1; |
---|
| 2790 | size_t R3 = e3 - s3 + 1; |
---|
| 2791 | size_t R4 = e4 - s4 + 1; |
---|
| 2792 | |
---|
| 2793 | size_t dataLength = R1*R2*R3*R4; |
---|
| 2794 | |
---|
| 2795 | size_t r34 = r3*r4; |
---|
| 2796 | size_t r234 = r2*r3*r4; |
---|
| 2797 | size_t R34 = R3*R4; |
---|
| 2798 | size_t R234 = R2*R3*R4; |
---|
| 2799 | |
---|
| 2800 | P0 = (double*)malloc(R34*sizeof(double)); |
---|
| 2801 | P1 = (double*)malloc(R34*sizeof(double)); |
---|
| 2802 | |
---|
| 2803 | double medianValue = medianValue_d; |
---|
| 2804 | short radExpo = getExponent_double(valueRangeSize/2); |
---|
| 2805 | computeReqLength_double(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 2806 | |
---|
| 2807 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 2808 | |
---|
| 2809 | double* spaceFillingValue = oriData; // |
---|
| 2810 | |
---|
| 2811 | DynamicIntArray *exactLeadNumArray; |
---|
| 2812 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 2813 | |
---|
| 2814 | DynamicByteArray *exactMidByteArray; |
---|
| 2815 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 2816 | |
---|
| 2817 | DynamicIntArray *resiBitArray; |
---|
| 2818 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 2819 | |
---|
| 2820 | unsigned char preDataBytes[8]; |
---|
| 2821 | longToBytes_bigEndian(preDataBytes, 0); |
---|
| 2822 | |
---|
| 2823 | int reqBytesLength = reqLength/8; |
---|
| 2824 | int resiBitsLength = reqLength%8; |
---|
| 2825 | |
---|
| 2826 | DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement)); |
---|
| 2827 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 2828 | |
---|
| 2829 | size_t l; |
---|
| 2830 | for (l = 0; l < R1; l++) |
---|
| 2831 | { |
---|
| 2832 | |
---|
| 2833 | /////////////////////////// Process layer-s2 /////////////////////////// |
---|
| 2834 | /* Process Row-s3 data s4*/ |
---|
| 2835 | size_t gIndex; //global index |
---|
| 2836 | size_t lIndex; //local index |
---|
| 2837 | size_t index2D; //local 2D index |
---|
| 2838 | |
---|
| 2839 | gIndex = (s1+l)*r234+s2*r34+s3*r4+s4; |
---|
| 2840 | lIndex = l*R234; |
---|
| 2841 | index2D = 0; |
---|
| 2842 | |
---|
| 2843 | type[lIndex] = 0; |
---|
| 2844 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2845 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2846 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2847 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2848 | P1[index2D] = vce->data; |
---|
| 2849 | |
---|
| 2850 | /* Process Row-s3 data s4+1*/ |
---|
| 2851 | gIndex = (s1+l)*r234+s2*r34+s3*r4+s4+1; |
---|
| 2852 | lIndex = l*R234+1; |
---|
| 2853 | index2D = 1; |
---|
| 2854 | |
---|
| 2855 | pred1D = P1[index2D-1]; |
---|
| 2856 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2857 | |
---|
| 2858 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2859 | |
---|
| 2860 | if (itvNum < exe_params->intvCapacity) |
---|
| 2861 | { |
---|
| 2862 | if (diff < 0) itvNum = -itvNum; |
---|
| 2863 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2864 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2865 | } |
---|
| 2866 | else |
---|
| 2867 | { |
---|
| 2868 | type[lIndex] = 0; |
---|
| 2869 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2870 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2871 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2872 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2873 | P1[index2D] = vce->data; |
---|
| 2874 | } |
---|
| 2875 | |
---|
| 2876 | /* Process Row-s3 data s4+2 --> data e4 */ |
---|
| 2877 | for (j = 2; j < R4; j++) |
---|
| 2878 | { |
---|
| 2879 | gIndex = (s1+l)*r234+s2*r34+s3*r4+s4+j; |
---|
| 2880 | lIndex = l*R234+j; |
---|
| 2881 | index2D = j; |
---|
| 2882 | |
---|
| 2883 | pred1D = 2*P1[index2D-1] - P1[index2D-2]; |
---|
| 2884 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2885 | |
---|
| 2886 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2887 | |
---|
| 2888 | if (itvNum < exe_params->intvCapacity) |
---|
| 2889 | { |
---|
| 2890 | if (diff < 0) itvNum = -itvNum; |
---|
| 2891 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2892 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2893 | } |
---|
| 2894 | else |
---|
| 2895 | { |
---|
| 2896 | type[lIndex] = 0; |
---|
| 2897 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2898 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2899 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2900 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2901 | P1[index2D] = vce->data; |
---|
| 2902 | } |
---|
| 2903 | } |
---|
| 2904 | |
---|
| 2905 | /* Process Row-s3+1 --> Row-e3 */ |
---|
| 2906 | for (i = 1; i < R3; i++) |
---|
| 2907 | { |
---|
| 2908 | /* Process row-s2+i data s3 */ |
---|
| 2909 | gIndex = (s1+l)*r234+s2*r34+(s3+i)*r4+s4; |
---|
| 2910 | lIndex = l*R234+i*R4; |
---|
| 2911 | index2D = i*R4; |
---|
| 2912 | |
---|
| 2913 | pred1D = P1[index2D-R4]; |
---|
| 2914 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2915 | |
---|
| 2916 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2917 | |
---|
| 2918 | if (itvNum < exe_params->intvCapacity) |
---|
| 2919 | { |
---|
| 2920 | if (diff < 0) itvNum = -itvNum; |
---|
| 2921 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2922 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2923 | } |
---|
| 2924 | else |
---|
| 2925 | { |
---|
| 2926 | type[lIndex] = 0; |
---|
| 2927 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2928 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2929 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2930 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2931 | P1[index2D] = vce->data; |
---|
| 2932 | } |
---|
| 2933 | |
---|
| 2934 | /* Process row-s3+i data s4+1 --> data e4*/ |
---|
| 2935 | for (j = 1; j < R4; j++) |
---|
| 2936 | { |
---|
| 2937 | gIndex = (s1+l)*r234+s2*r34+(s3+i)*r4+s4+j; |
---|
| 2938 | lIndex = l*R234+i*R4+j; |
---|
| 2939 | index2D = i*R4+j; |
---|
| 2940 | |
---|
| 2941 | pred2D = P1[index2D-1] + P1[index2D-R4] - P1[index2D-R4-1]; |
---|
| 2942 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 2943 | |
---|
| 2944 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2945 | |
---|
| 2946 | if (itvNum < exe_params->intvCapacity) |
---|
| 2947 | { |
---|
| 2948 | if (diff < 0) itvNum = -itvNum; |
---|
| 2949 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2950 | P1[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2951 | } |
---|
| 2952 | else |
---|
| 2953 | { |
---|
| 2954 | type[lIndex] = 0; |
---|
| 2955 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2956 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2957 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2958 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2959 | P1[index2D] = vce->data; |
---|
| 2960 | } |
---|
| 2961 | } |
---|
| 2962 | } |
---|
| 2963 | |
---|
| 2964 | |
---|
| 2965 | /////////////////////////// Process layer-s2+1 --> layer-e2 /////////////////////////// |
---|
| 2966 | |
---|
| 2967 | for (k = 1; k < R2; k++) |
---|
| 2968 | { |
---|
| 2969 | /* Process Row-s3 data s4*/ |
---|
| 2970 | gIndex = (s1+l)*r234+(s2+k)*r34+s3*r4+s4; |
---|
| 2971 | lIndex = l*R234+k*R34; |
---|
| 2972 | index2D = 0; |
---|
| 2973 | |
---|
| 2974 | pred1D = P1[index2D]; |
---|
| 2975 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2976 | |
---|
| 2977 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2978 | |
---|
| 2979 | if (itvNum < exe_params->intvCapacity) |
---|
| 2980 | { |
---|
| 2981 | if (diff < 0) itvNum = -itvNum; |
---|
| 2982 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2983 | P0[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2984 | } |
---|
| 2985 | else |
---|
| 2986 | { |
---|
| 2987 | type[lIndex] = 0; |
---|
| 2988 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2989 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2990 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 2991 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2992 | P0[index2D] = vce->data; |
---|
| 2993 | } |
---|
| 2994 | |
---|
| 2995 | |
---|
| 2996 | /* Process Row-s3 data s4+1 --> data e4 */ |
---|
| 2997 | for (j = 1; j < R4; j++) |
---|
| 2998 | { |
---|
| 2999 | gIndex = (s1+l)*r234+(s2+k)*r34+s3*r4+s4+j; |
---|
| 3000 | lIndex = l*R234+k*R34+j; |
---|
| 3001 | index2D = j; |
---|
| 3002 | |
---|
| 3003 | pred2D = P0[index2D-1] + P1[index2D] - P1[index2D-1]; |
---|
| 3004 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 3005 | |
---|
| 3006 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3007 | |
---|
| 3008 | if (itvNum < exe_params->intvCapacity) |
---|
| 3009 | { |
---|
| 3010 | if (diff < 0) itvNum = -itvNum; |
---|
| 3011 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3012 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3013 | } |
---|
| 3014 | else |
---|
| 3015 | { |
---|
| 3016 | type[lIndex] = 0; |
---|
| 3017 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3018 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3019 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 3020 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3021 | P0[index2D] = vce->data; |
---|
| 3022 | } |
---|
| 3023 | } |
---|
| 3024 | |
---|
| 3025 | /* Process Row-s3+1 --> Row-e3 */ |
---|
| 3026 | for (i = 1; i < R3; i++) |
---|
| 3027 | { |
---|
| 3028 | /* Process Row-s3+i data s4 */ |
---|
| 3029 | gIndex = (s1+l)*r234+(s2+k)*r34+(s3+i)*r4+s4; |
---|
| 3030 | lIndex = l*R234+k*R34+i*R4; |
---|
| 3031 | index2D = i*R4; |
---|
| 3032 | |
---|
| 3033 | pred2D = P0[index2D-R4] + P1[index2D] - P1[index2D-R4]; |
---|
| 3034 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 3035 | |
---|
| 3036 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3037 | |
---|
| 3038 | if (itvNum < exe_params->intvCapacity) |
---|
| 3039 | { |
---|
| 3040 | if (diff < 0) itvNum = -itvNum; |
---|
| 3041 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3042 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3043 | } |
---|
| 3044 | else |
---|
| 3045 | { |
---|
| 3046 | type[lIndex] = 0; |
---|
| 3047 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3048 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3049 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 3050 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3051 | P0[index2D] = vce->data; |
---|
| 3052 | } |
---|
| 3053 | |
---|
| 3054 | /* Process Row-s3+i data s4+1 --> data e4 */ |
---|
| 3055 | for (j = 1; j < R4; j++) |
---|
| 3056 | { |
---|
| 3057 | gIndex = (s1+l)*r234+(s2+k)*r34+(s3+i)*r4+s4+j; |
---|
| 3058 | lIndex = l*R234+k*R34+i*R4+j; |
---|
| 3059 | index2D = i*R4+j; |
---|
| 3060 | |
---|
| 3061 | // printf ("global index = %d, local index = %d\n", gIndex, lIndex); |
---|
| 3062 | |
---|
| 3063 | pred3D = P0[index2D-1] + P0[index2D-R4]+ P1[index2D] - P0[index2D-R4-1] - P1[index2D-R4] - P1[index2D-1] + P1[index2D-R4-1]; |
---|
| 3064 | diff = spaceFillingValue[gIndex] - pred3D; |
---|
| 3065 | |
---|
| 3066 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3067 | |
---|
| 3068 | if (itvNum < exe_params->intvCapacity) |
---|
| 3069 | { |
---|
| 3070 | if (diff < 0) itvNum = -itvNum; |
---|
| 3071 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3072 | P0[index2D] = pred3D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3073 | } |
---|
| 3074 | else |
---|
| 3075 | { |
---|
| 3076 | type[lIndex] = 0; |
---|
| 3077 | compressSingleDoubleValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3078 | updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3079 | memcpy(preDataBytes,vce->curBytes,8); |
---|
| 3080 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3081 | P0[index2D] = vce->data; |
---|
| 3082 | } |
---|
| 3083 | } |
---|
| 3084 | } |
---|
| 3085 | |
---|
| 3086 | double *Pt; |
---|
| 3087 | Pt = P1; |
---|
| 3088 | P1 = P0; |
---|
| 3089 | P0 = Pt; |
---|
| 3090 | } |
---|
| 3091 | } |
---|
| 3092 | |
---|
| 3093 | free(P0); |
---|
| 3094 | free(P1); |
---|
| 3095 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 3096 | |
---|
| 3097 | TightDataPointStorageD* tdps; |
---|
| 3098 | |
---|
| 3099 | new_TightDataPointStorageD(&tdps, dataLength, exactDataNum, |
---|
| 3100 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 3101 | exactLeadNumArray->array, |
---|
| 3102 | resiBitArray->array, resiBitArray->size, |
---|
| 3103 | resiBitsLength, |
---|
| 3104 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 3105 | |
---|
| 3106 | //free memory |
---|
| 3107 | free_DIA(exactLeadNumArray); |
---|
| 3108 | free_DIA(resiBitArray); |
---|
| 3109 | free(type); |
---|
| 3110 | free(vce); |
---|
| 3111 | free(lce); |
---|
| 3112 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 3113 | |
---|
| 3114 | return tdps; |
---|
| 3115 | } |
---|
| 3116 | |
---|
| 3117 | /** |
---|
| 3118 | * |
---|
| 3119 | * This is a fast implementation for optimize_intervals_double_3D() |
---|
| 3120 | * */ |
---|
| 3121 | unsigned int optimize_intervals_double_3D_opt(double *oriData, size_t r1, size_t r2, size_t r3, double realPrecision){ |
---|
| 3122 | size_t i; |
---|
| 3123 | size_t radiusIndex; |
---|
| 3124 | size_t r23=r2*r3; |
---|
| 3125 | double pred_value = 0, pred_err; |
---|
| 3126 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 3127 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 3128 | size_t totalSampleSize = 0; |
---|
| 3129 | |
---|
| 3130 | size_t offset_count = confparams_cpr->sampleDistance - 2; // count r3 offset |
---|
| 3131 | size_t offset_count_2; |
---|
| 3132 | double * data_pos = oriData + r23 + r3 + offset_count; |
---|
| 3133 | size_t n1_count = 1, n2_count = 1; // count i,j sum |
---|
| 3134 | size_t len = r1 * r2 * r3; |
---|
| 3135 | while(data_pos - oriData < len){ |
---|
| 3136 | totalSampleSize++; |
---|
| 3137 | pred_value = data_pos[-1] + data_pos[-r3] + data_pos[-r23] - data_pos[-1-r23] - data_pos[-r3-1] - data_pos[-r3-r23] + data_pos[-r3-r23-1]; |
---|
| 3138 | pred_err = fabs(pred_value - *data_pos); |
---|
| 3139 | radiusIndex = (pred_err/realPrecision+1)/2; |
---|
| 3140 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 3141 | { |
---|
| 3142 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 3143 | } |
---|
| 3144 | intervals[radiusIndex]++; |
---|
| 3145 | offset_count += confparams_cpr->sampleDistance; |
---|
| 3146 | if(offset_count >= r3){ |
---|
| 3147 | n2_count ++; |
---|
| 3148 | if(n2_count == r2){ |
---|
| 3149 | n1_count ++; |
---|
| 3150 | n2_count = 1; |
---|
| 3151 | data_pos += r3; |
---|
| 3152 | } |
---|
| 3153 | offset_count_2 = (n1_count + n2_count) % confparams_cpr->sampleDistance; |
---|
| 3154 | data_pos += (r3 + confparams_cpr->sampleDistance - offset_count) + (confparams_cpr->sampleDistance - offset_count_2); |
---|
| 3155 | offset_count = (confparams_cpr->sampleDistance - offset_count_2); |
---|
| 3156 | if(offset_count == 0) offset_count ++; |
---|
| 3157 | } |
---|
| 3158 | else data_pos += confparams_cpr->sampleDistance; |
---|
| 3159 | } |
---|
| 3160 | //compute the appropriate number |
---|
| 3161 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 3162 | size_t sum = 0; |
---|
| 3163 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 3164 | { |
---|
| 3165 | sum += intervals[i]; |
---|
| 3166 | if(sum>targetCount) |
---|
| 3167 | break; |
---|
| 3168 | } |
---|
| 3169 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 3170 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 3171 | unsigned int accIntervals = 2*(i+1); |
---|
| 3172 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 3173 | |
---|
| 3174 | if(powerOf2<32) |
---|
| 3175 | powerOf2 = 32; |
---|
| 3176 | free(intervals); |
---|
| 3177 | return powerOf2; |
---|
| 3178 | } |
---|
| 3179 | |
---|
| 3180 | unsigned int optimize_intervals_double_2D_opt(double *oriData, size_t r1, size_t r2, double realPrecision) |
---|
| 3181 | { |
---|
| 3182 | size_t i; |
---|
| 3183 | size_t radiusIndex; |
---|
| 3184 | double pred_value = 0, pred_err; |
---|
| 3185 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 3186 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
[9ee2ce3] | 3187 | size_t totalSampleSize = 0; |
---|
[2c47b73] | 3188 | |
---|
| 3189 | size_t offset_count = confparams_cpr->sampleDistance - 1; // count r2 offset |
---|
| 3190 | size_t offset_count_2; |
---|
| 3191 | double * data_pos = oriData + r2 + offset_count; |
---|
| 3192 | size_t n1_count = 1; // count i sum |
---|
| 3193 | size_t len = r1 * r2; |
---|
| 3194 | while(data_pos - oriData < len){ |
---|
| 3195 | totalSampleSize++; |
---|
| 3196 | pred_value = data_pos[-1] + data_pos[-r2] - data_pos[-r2-1]; |
---|
| 3197 | pred_err = fabs(pred_value - *data_pos); |
---|
| 3198 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 3199 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 3200 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 3201 | intervals[radiusIndex]++; |
---|
| 3202 | |
---|
| 3203 | offset_count += confparams_cpr->sampleDistance; |
---|
| 3204 | if(offset_count >= r2){ |
---|
| 3205 | n1_count ++; |
---|
| 3206 | offset_count_2 = n1_count % confparams_cpr->sampleDistance; |
---|
| 3207 | data_pos += (r2 + confparams_cpr->sampleDistance - offset_count) + (confparams_cpr->sampleDistance - offset_count_2); |
---|
| 3208 | offset_count = (confparams_cpr->sampleDistance - offset_count_2); |
---|
| 3209 | if(offset_count == 0) offset_count ++; |
---|
| 3210 | } |
---|
| 3211 | else data_pos += confparams_cpr->sampleDistance; |
---|
| 3212 | } |
---|
| 3213 | |
---|
| 3214 | //compute the appropriate number |
---|
| 3215 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 3216 | size_t sum = 0; |
---|
| 3217 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 3218 | { |
---|
| 3219 | sum += intervals[i]; |
---|
| 3220 | if(sum>targetCount) |
---|
| 3221 | break; |
---|
| 3222 | } |
---|
| 3223 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 3224 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 3225 | unsigned int accIntervals = 2*(i+1); |
---|
| 3226 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 3227 | |
---|
| 3228 | if(powerOf2<32) |
---|
| 3229 | powerOf2 = 32; |
---|
| 3230 | |
---|
| 3231 | free(intervals); |
---|
| 3232 | return powerOf2; |
---|
| 3233 | } |
---|
| 3234 | |
---|
| 3235 | unsigned int optimize_intervals_double_1D_opt(double *oriData, size_t dataLength, double realPrecision) |
---|
| 3236 | { |
---|
| 3237 | size_t i = 0, radiusIndex; |
---|
| 3238 | double pred_value = 0, pred_err; |
---|
| 3239 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 3240 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
[9ee2ce3] | 3241 | size_t totalSampleSize = 0; |
---|
[2c47b73] | 3242 | |
---|
| 3243 | double * data_pos = oriData + 2; |
---|
| 3244 | while(data_pos - oriData < dataLength){ |
---|
| 3245 | totalSampleSize++; |
---|
| 3246 | pred_value = data_pos[-1]; |
---|
| 3247 | pred_err = fabs(pred_value - *data_pos); |
---|
| 3248 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 3249 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 3250 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 3251 | intervals[radiusIndex]++; |
---|
| 3252 | |
---|
| 3253 | data_pos += confparams_cpr->sampleDistance; |
---|
| 3254 | } |
---|
| 3255 | //compute the appropriate number |
---|
| 3256 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 3257 | size_t sum = 0; |
---|
| 3258 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 3259 | { |
---|
| 3260 | sum += intervals[i]; |
---|
| 3261 | if(sum>targetCount) |
---|
| 3262 | break; |
---|
| 3263 | } |
---|
| 3264 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 3265 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 3266 | |
---|
| 3267 | unsigned int accIntervals = 2*(i+1); |
---|
| 3268 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 3269 | |
---|
| 3270 | if(powerOf2<32) |
---|
| 3271 | powerOf2 = 32; |
---|
| 3272 | |
---|
| 3273 | free(intervals); |
---|
| 3274 | return powerOf2; |
---|
| 3275 | } |
---|
[9ee2ce3] | 3276 | |
---|
| 3277 | /*The above code is for sz 1.4.13; the following code is for sz 2.0*/ |
---|
| 3278 | unsigned int optimize_intervals_double_2D_with_freq_and_dense_pos(double *oriData, size_t r1, size_t r2, double realPrecision, double * dense_pos, double * max_freq, double * mean_freq) |
---|
| 3279 | { |
---|
| 3280 | double mean = 0.0; |
---|
| 3281 | size_t len = r1 * r2; |
---|
| 3282 | size_t mean_distance = (int) (sqrt(len)); |
---|
| 3283 | |
---|
| 3284 | double * data_pos = oriData; |
---|
| 3285 | size_t mean_count = 0; |
---|
| 3286 | while(data_pos - oriData < len){ |
---|
| 3287 | mean += *data_pos; |
---|
| 3288 | mean_count ++; |
---|
| 3289 | data_pos += mean_distance; |
---|
| 3290 | } |
---|
| 3291 | if(mean_count > 0) mean /= mean_count; |
---|
| 3292 | size_t range = 8192; |
---|
| 3293 | size_t radius = 4096; |
---|
| 3294 | size_t * freq_intervals = (size_t *) malloc(range*sizeof(size_t)); |
---|
| 3295 | memset(freq_intervals, 0, range*sizeof(size_t)); |
---|
| 3296 | |
---|
| 3297 | unsigned int maxRangeRadius = confparams_cpr->maxRangeRadius; |
---|
| 3298 | int sampleDistance = confparams_cpr->sampleDistance; |
---|
| 3299 | double predThreshold = confparams_cpr->predThreshold; |
---|
| 3300 | |
---|
| 3301 | size_t i; |
---|
| 3302 | size_t radiusIndex; |
---|
| 3303 | double pred_value = 0, pred_err; |
---|
| 3304 | size_t *intervals = (size_t*)malloc(maxRangeRadius*sizeof(size_t)); |
---|
| 3305 | memset(intervals, 0, maxRangeRadius*sizeof(size_t)); |
---|
| 3306 | |
---|
| 3307 | double mean_diff; |
---|
| 3308 | ptrdiff_t freq_index; |
---|
| 3309 | size_t freq_count = 0; |
---|
| 3310 | size_t n1_count = 1; |
---|
| 3311 | size_t offset_count = sampleDistance - 1; |
---|
| 3312 | size_t offset_count_2 = 0; |
---|
| 3313 | size_t sample_count = 0; |
---|
| 3314 | data_pos = oriData + r2 + offset_count; |
---|
| 3315 | while(data_pos - oriData < len){ |
---|
| 3316 | pred_value = data_pos[-1] + data_pos[-r2] - data_pos[-r2-1]; |
---|
| 3317 | pred_err = fabs(pred_value - *data_pos); |
---|
| 3318 | if(pred_err < realPrecision) freq_count ++; |
---|
| 3319 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 3320 | if(radiusIndex>=maxRangeRadius) |
---|
| 3321 | radiusIndex = maxRangeRadius - 1; |
---|
| 3322 | intervals[radiusIndex]++; |
---|
| 3323 | |
---|
| 3324 | mean_diff = *data_pos - mean; |
---|
| 3325 | if(mean_diff > 0) freq_index = (ptrdiff_t)(mean_diff/realPrecision) + radius; |
---|
| 3326 | else freq_index = (ptrdiff_t)(mean_diff/realPrecision) - 1 + radius; |
---|
| 3327 | if(freq_index <= 0){ |
---|
| 3328 | freq_intervals[0] ++; |
---|
| 3329 | } |
---|
| 3330 | else if(freq_index >= range){ |
---|
| 3331 | freq_intervals[range - 1] ++; |
---|
| 3332 | } |
---|
| 3333 | else{ |
---|
| 3334 | freq_intervals[freq_index] ++; |
---|
| 3335 | } |
---|
| 3336 | offset_count += sampleDistance; |
---|
| 3337 | if(offset_count >= r2){ |
---|
| 3338 | n1_count ++; |
---|
| 3339 | offset_count_2 = n1_count % sampleDistance; |
---|
| 3340 | data_pos += (r2 + sampleDistance - offset_count) + (sampleDistance - offset_count_2); |
---|
| 3341 | offset_count = (sampleDistance - offset_count_2); |
---|
| 3342 | if(offset_count == 0) offset_count ++; |
---|
| 3343 | } |
---|
| 3344 | else data_pos += sampleDistance; |
---|
| 3345 | sample_count ++; |
---|
| 3346 | } |
---|
| 3347 | *max_freq = freq_count * 1.0/ sample_count; |
---|
| 3348 | |
---|
| 3349 | //compute the appropriate number |
---|
| 3350 | size_t targetCount = sample_count*predThreshold; |
---|
| 3351 | size_t sum = 0; |
---|
| 3352 | for(i=0;i<maxRangeRadius;i++) |
---|
| 3353 | { |
---|
| 3354 | sum += intervals[i]; |
---|
| 3355 | if(sum>targetCount) |
---|
| 3356 | break; |
---|
| 3357 | } |
---|
| 3358 | if(i>=maxRangeRadius) |
---|
| 3359 | i = maxRangeRadius-1; |
---|
| 3360 | unsigned int accIntervals = 2*(i+1); |
---|
| 3361 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 3362 | |
---|
| 3363 | if(powerOf2<32) |
---|
| 3364 | powerOf2 = 32; |
---|
| 3365 | |
---|
| 3366 | // collect frequency |
---|
| 3367 | size_t max_sum = 0; |
---|
| 3368 | size_t max_index = 0; |
---|
| 3369 | size_t tmp_sum; |
---|
| 3370 | size_t * freq_pos = freq_intervals + 1; |
---|
| 3371 | for(size_t i=1; i<range-2; i++){ |
---|
| 3372 | tmp_sum = freq_pos[0] + freq_pos[1]; |
---|
| 3373 | if(tmp_sum > max_sum){ |
---|
| 3374 | max_sum = tmp_sum; |
---|
| 3375 | max_index = i; |
---|
| 3376 | } |
---|
| 3377 | freq_pos ++; |
---|
| 3378 | } |
---|
| 3379 | *dense_pos = mean + realPrecision * (ptrdiff_t)(max_index + 1 - radius); |
---|
| 3380 | *mean_freq = max_sum * 1.0 / sample_count; |
---|
| 3381 | |
---|
| 3382 | free(freq_intervals); |
---|
| 3383 | free(intervals); |
---|
| 3384 | return powerOf2; |
---|
| 3385 | } |
---|
| 3386 | |
---|
| 3387 | unsigned int optimize_intervals_double_3D_with_freq_and_dense_pos(double *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, double * dense_pos, double * max_freq, double * mean_freq) |
---|
| 3388 | { |
---|
| 3389 | double mean = 0.0; |
---|
| 3390 | size_t len = r1 * r2 * r3; |
---|
| 3391 | size_t mean_distance = (int) (sqrt(len)); |
---|
| 3392 | double * data_pos = oriData; |
---|
| 3393 | size_t offset_count = 0; |
---|
| 3394 | size_t offset_count_2 = 0; |
---|
| 3395 | size_t mean_count = 0; |
---|
| 3396 | while(data_pos - oriData < len){ |
---|
| 3397 | mean += *data_pos; |
---|
| 3398 | mean_count ++; |
---|
| 3399 | data_pos += mean_distance; |
---|
| 3400 | offset_count += mean_distance; |
---|
| 3401 | offset_count_2 += mean_distance; |
---|
| 3402 | if(offset_count >= r3){ |
---|
| 3403 | offset_count = 0; |
---|
| 3404 | data_pos -= 1; |
---|
| 3405 | } |
---|
| 3406 | if(offset_count_2 >= r2 * r3){ |
---|
| 3407 | offset_count_2 = 0; |
---|
| 3408 | data_pos -= 1; |
---|
| 3409 | } |
---|
| 3410 | } |
---|
| 3411 | if(mean_count > 0) mean /= mean_count; |
---|
| 3412 | size_t range = 8192; |
---|
| 3413 | size_t radius = 4096; |
---|
| 3414 | size_t * freq_intervals = (size_t *) malloc(range*sizeof(size_t)); |
---|
| 3415 | memset(freq_intervals, 0, range*sizeof(size_t)); |
---|
| 3416 | |
---|
| 3417 | unsigned int maxRangeRadius = confparams_cpr->maxRangeRadius; |
---|
| 3418 | int sampleDistance = confparams_cpr->sampleDistance; |
---|
| 3419 | double predThreshold = confparams_cpr->predThreshold; |
---|
| 3420 | |
---|
| 3421 | size_t i; |
---|
| 3422 | size_t radiusIndex; |
---|
| 3423 | size_t r23=r2*r3; |
---|
| 3424 | double pred_value = 0, pred_err; |
---|
| 3425 | size_t *intervals = (size_t*)malloc(maxRangeRadius*sizeof(size_t)); |
---|
| 3426 | memset(intervals, 0, maxRangeRadius*sizeof(size_t)); |
---|
| 3427 | |
---|
| 3428 | double mean_diff; |
---|
| 3429 | ptrdiff_t freq_index; |
---|
| 3430 | size_t freq_count = 0; |
---|
| 3431 | size_t sample_count = 0; |
---|
| 3432 | |
---|
| 3433 | offset_count = confparams_cpr->sampleDistance - 2; // count r3 offset |
---|
| 3434 | data_pos = oriData + r23 + r3 + offset_count; |
---|
| 3435 | size_t n1_count = 1, n2_count = 1; // count i,j sum |
---|
| 3436 | |
---|
| 3437 | while(data_pos - oriData < len){ |
---|
| 3438 | |
---|
| 3439 | pred_value = data_pos[-1] + data_pos[-r3] + data_pos[-r23] - data_pos[-1-r23] - data_pos[-r3-1] - data_pos[-r3-r23] + data_pos[-r3-r23-1]; |
---|
| 3440 | pred_err = fabs(pred_value - *data_pos); |
---|
| 3441 | if(pred_err < realPrecision) freq_count ++; |
---|
| 3442 | radiusIndex = (pred_err/realPrecision+1)/2; |
---|
| 3443 | if(radiusIndex>=maxRangeRadius) |
---|
| 3444 | { |
---|
| 3445 | radiusIndex = maxRangeRadius - 1; |
---|
| 3446 | } |
---|
| 3447 | intervals[radiusIndex]++; |
---|
| 3448 | |
---|
| 3449 | mean_diff = *data_pos - mean; |
---|
| 3450 | if(mean_diff > 0) freq_index = (ptrdiff_t)(mean_diff/realPrecision) + radius; |
---|
| 3451 | else freq_index = (ptrdiff_t)(mean_diff/realPrecision) - 1 + radius; |
---|
| 3452 | if(freq_index <= 0){ |
---|
| 3453 | freq_intervals[0] ++; |
---|
| 3454 | } |
---|
| 3455 | else if(freq_index >= range){ |
---|
| 3456 | freq_intervals[range - 1] ++; |
---|
| 3457 | } |
---|
| 3458 | else{ |
---|
| 3459 | freq_intervals[freq_index] ++; |
---|
| 3460 | } |
---|
| 3461 | offset_count += sampleDistance; |
---|
| 3462 | if(offset_count >= r3){ |
---|
| 3463 | n2_count ++; |
---|
| 3464 | if(n2_count == r2){ |
---|
| 3465 | n1_count ++; |
---|
| 3466 | n2_count = 1; |
---|
| 3467 | data_pos += r3; |
---|
| 3468 | } |
---|
| 3469 | offset_count_2 = (n1_count + n2_count) % sampleDistance; |
---|
| 3470 | data_pos += (r3 + sampleDistance - offset_count) + (sampleDistance - offset_count_2); |
---|
| 3471 | offset_count = (sampleDistance - offset_count_2); |
---|
| 3472 | if(offset_count == 0) offset_count ++; |
---|
| 3473 | } |
---|
| 3474 | else data_pos += sampleDistance; |
---|
| 3475 | sample_count ++; |
---|
| 3476 | } |
---|
| 3477 | *max_freq = freq_count * 1.0/ sample_count; |
---|
| 3478 | |
---|
| 3479 | //compute the appropriate number |
---|
| 3480 | size_t targetCount = sample_count*predThreshold; |
---|
| 3481 | size_t sum = 0; |
---|
| 3482 | for(i=0;i<maxRangeRadius;i++) |
---|
| 3483 | { |
---|
| 3484 | sum += intervals[i]; |
---|
| 3485 | if(sum>targetCount) |
---|
| 3486 | break; |
---|
| 3487 | } |
---|
| 3488 | if(i>=maxRangeRadius) |
---|
| 3489 | i = maxRangeRadius-1; |
---|
| 3490 | unsigned int accIntervals = 2*(i+1); |
---|
| 3491 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 3492 | |
---|
| 3493 | if(powerOf2<32) |
---|
| 3494 | powerOf2 = 32; |
---|
| 3495 | // collect frequency |
---|
| 3496 | size_t max_sum = 0; |
---|
| 3497 | size_t max_index = 0; |
---|
| 3498 | size_t tmp_sum; |
---|
| 3499 | size_t * freq_pos = freq_intervals + 1; |
---|
| 3500 | for(size_t i=1; i<range-2; i++){ |
---|
| 3501 | tmp_sum = freq_pos[0] + freq_pos[1]; |
---|
| 3502 | if(tmp_sum > max_sum){ |
---|
| 3503 | max_sum = tmp_sum; |
---|
| 3504 | max_index = i; |
---|
| 3505 | } |
---|
| 3506 | freq_pos ++; |
---|
| 3507 | } |
---|
| 3508 | *dense_pos = mean + realPrecision * (ptrdiff_t)(max_index + 1 - radius); |
---|
| 3509 | *mean_freq = max_sum * 1.0 / sample_count; |
---|
| 3510 | |
---|
| 3511 | free(freq_intervals); |
---|
| 3512 | free(intervals); |
---|
| 3513 | return powerOf2; |
---|
| 3514 | } |
---|
| 3515 | |
---|
| 3516 | #define MIN(a, b) a<b? a : b |
---|
| 3517 | unsigned char * SZ_compress_double_2D_MDQ_nonblocked_with_blocked_regression(double *oriData, size_t r1, size_t r2, double realPrecision, size_t * comp_size){ |
---|
| 3518 | |
---|
| 3519 | unsigned int quantization_intervals; |
---|
| 3520 | double sz_sample_correct_freq = -1;//0.5; //-1 |
---|
| 3521 | double dense_pos; |
---|
| 3522 | double mean_flush_freq; |
---|
| 3523 | unsigned char use_mean = 0; |
---|
| 3524 | |
---|
| 3525 | if(exe_params->optQuantMode==1) |
---|
| 3526 | { |
---|
| 3527 | quantization_intervals = optimize_intervals_double_2D_with_freq_and_dense_pos(oriData, r1, r2, realPrecision, &dense_pos, &sz_sample_correct_freq, &mean_flush_freq); |
---|
| 3528 | if(mean_flush_freq > 0.5 || mean_flush_freq > sz_sample_correct_freq) use_mean = 1; |
---|
| 3529 | updateQuantizationInfo(quantization_intervals); |
---|
| 3530 | } |
---|
| 3531 | else{ |
---|
| 3532 | quantization_intervals = exe_params->intvCapacity; |
---|
| 3533 | } |
---|
| 3534 | |
---|
| 3535 | // calculate block dims |
---|
| 3536 | size_t num_x, num_y; |
---|
| 3537 | size_t block_size = 16; |
---|
| 3538 | |
---|
| 3539 | SZ_COMPUTE_2D_NUMBER_OF_BLOCKS(r1, num_x, block_size); |
---|
| 3540 | SZ_COMPUTE_2D_NUMBER_OF_BLOCKS(r2, num_y, block_size); |
---|
| 3541 | |
---|
| 3542 | size_t split_index_x, split_index_y; |
---|
| 3543 | size_t early_blockcount_x, early_blockcount_y; |
---|
| 3544 | size_t late_blockcount_x, late_blockcount_y; |
---|
| 3545 | SZ_COMPUTE_BLOCKCOUNT(r1, num_x, split_index_x, early_blockcount_x, late_blockcount_x); |
---|
| 3546 | SZ_COMPUTE_BLOCKCOUNT(r2, num_y, split_index_y, early_blockcount_y, late_blockcount_y); |
---|
| 3547 | |
---|
| 3548 | size_t max_num_block_elements = early_blockcount_x * early_blockcount_y; |
---|
| 3549 | size_t num_blocks = num_x * num_y; |
---|
| 3550 | size_t num_elements = r1 * r2; |
---|
| 3551 | |
---|
| 3552 | size_t dim0_offset = r2; |
---|
| 3553 | |
---|
| 3554 | int * result_type = (int *) malloc(num_elements * sizeof(int)); |
---|
| 3555 | size_t unpred_data_max_size = max_num_block_elements; |
---|
| 3556 | double * result_unpredictable_data = (double *) malloc(unpred_data_max_size * sizeof(double) * num_blocks); |
---|
| 3557 | size_t total_unpred = 0; |
---|
| 3558 | size_t unpredictable_count; |
---|
| 3559 | double * data_pos = oriData; |
---|
| 3560 | int * type = result_type; |
---|
| 3561 | size_t offset_x, offset_y; |
---|
| 3562 | size_t current_blockcount_x, current_blockcount_y; |
---|
| 3563 | |
---|
| 3564 | double * reg_params = (double *) malloc(num_blocks * 4 * sizeof(double)); |
---|
| 3565 | double * reg_params_pos = reg_params; |
---|
| 3566 | // move regression part out |
---|
| 3567 | size_t params_offset_b = num_blocks; |
---|
| 3568 | size_t params_offset_c = 2*num_blocks; |
---|
| 3569 | for(size_t i=0; i<num_x; i++){ |
---|
| 3570 | for(size_t j=0; j<num_y; j++){ |
---|
| 3571 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 3572 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 3573 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 3574 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 3575 | |
---|
| 3576 | data_pos = oriData + offset_x * dim0_offset + offset_y; |
---|
| 3577 | |
---|
| 3578 | { |
---|
| 3579 | double * cur_data_pos = data_pos; |
---|
| 3580 | double fx = 0.0; |
---|
| 3581 | double fy = 0.0; |
---|
| 3582 | double f = 0; |
---|
| 3583 | double sum_x; |
---|
| 3584 | double curData; |
---|
| 3585 | for(size_t i=0; i<current_blockcount_x; i++){ |
---|
| 3586 | sum_x = 0; |
---|
| 3587 | for(size_t j=0; j<current_blockcount_y; j++){ |
---|
| 3588 | curData = *cur_data_pos; |
---|
| 3589 | sum_x += curData; |
---|
| 3590 | fy += curData * j; |
---|
| 3591 | cur_data_pos ++; |
---|
| 3592 | } |
---|
| 3593 | fx += sum_x * i; |
---|
| 3594 | f += sum_x; |
---|
| 3595 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
| 3596 | } |
---|
| 3597 | double coeff = 1.0 / (current_blockcount_x * current_blockcount_y); |
---|
| 3598 | reg_params_pos[0] = (2 * fx / (current_blockcount_x - 1) - f) * 6 * coeff / (current_blockcount_x + 1); |
---|
| 3599 | reg_params_pos[params_offset_b] = (2 * fy / (current_blockcount_y - 1) - f) * 6 * coeff / (current_blockcount_y + 1); |
---|
| 3600 | reg_params_pos[params_offset_c] = f * coeff - ((current_blockcount_x - 1) * reg_params_pos[0] / 2 + (current_blockcount_y - 1) * reg_params_pos[params_offset_b] / 2); |
---|
| 3601 | } |
---|
| 3602 | |
---|
| 3603 | reg_params_pos ++; |
---|
| 3604 | } |
---|
| 3605 | } |
---|
| 3606 | |
---|
| 3607 | //Compress coefficient arrays |
---|
| 3608 | double precision_a, precision_b, precision_c; |
---|
| 3609 | double rel_param_err = 0.15/3; |
---|
| 3610 | precision_a = rel_param_err * realPrecision / late_blockcount_x; |
---|
| 3611 | precision_b = rel_param_err * realPrecision / late_blockcount_y; |
---|
| 3612 | precision_c = rel_param_err * realPrecision; |
---|
| 3613 | |
---|
| 3614 | double mean = 0; |
---|
| 3615 | use_mean = 0; |
---|
| 3616 | if(use_mean){ |
---|
| 3617 | // compute mean |
---|
| 3618 | double sum = 0.0; |
---|
| 3619 | size_t mean_count = 0; |
---|
| 3620 | for(size_t i=0; i<num_elements; i++){ |
---|
| 3621 | if(fabs(oriData[i] - dense_pos) < realPrecision){ |
---|
| 3622 | sum += oriData[i]; |
---|
| 3623 | mean_count ++; |
---|
| 3624 | } |
---|
| 3625 | } |
---|
| 3626 | if(mean_count > 0) mean = sum / mean_count; |
---|
| 3627 | } |
---|
| 3628 | |
---|
| 3629 | |
---|
| 3630 | double tmp_realPrecision = realPrecision; |
---|
| 3631 | |
---|
| 3632 | // use two prediction buffers for higher performance |
---|
| 3633 | double * unpredictable_data = result_unpredictable_data; |
---|
| 3634 | unsigned char * indicator = (unsigned char *) malloc(num_blocks * sizeof(unsigned char)); |
---|
| 3635 | memset(indicator, 0, num_blocks * sizeof(unsigned char)); |
---|
| 3636 | size_t reg_count = 0; |
---|
| 3637 | size_t strip_dim_0 = early_blockcount_x + 1; |
---|
| 3638 | size_t strip_dim_1 = r2 + 1; |
---|
| 3639 | size_t strip_dim0_offset = strip_dim_1; |
---|
| 3640 | unsigned char * indicator_pos = indicator; |
---|
| 3641 | size_t prediction_buffer_size = strip_dim_0 * strip_dim0_offset * sizeof(double); |
---|
| 3642 | double * prediction_buffer_1 = (double *) malloc(prediction_buffer_size); |
---|
| 3643 | memset(prediction_buffer_1, 0, prediction_buffer_size); |
---|
| 3644 | double * prediction_buffer_2 = (double *) malloc(prediction_buffer_size); |
---|
| 3645 | memset(prediction_buffer_2, 0, prediction_buffer_size); |
---|
| 3646 | double * cur_pb_buf = prediction_buffer_1; |
---|
| 3647 | double * next_pb_buf = prediction_buffer_2; |
---|
| 3648 | double * cur_pb_buf_pos; |
---|
| 3649 | double * next_pb_buf_pos; |
---|
| 3650 | int intvCapacity = exe_params->intvCapacity; |
---|
| 3651 | int intvRadius = exe_params->intvRadius; |
---|
| 3652 | int use_reg = 0; |
---|
| 3653 | |
---|
| 3654 | reg_params_pos = reg_params; |
---|
| 3655 | // compress the regression coefficients on the fly |
---|
| 3656 | double last_coeffcients[3] = {0.0}; |
---|
| 3657 | int coeff_intvCapacity_sz = 65536; |
---|
| 3658 | int coeff_intvRadius = coeff_intvCapacity_sz / 2; |
---|
| 3659 | int * coeff_type[3]; |
---|
| 3660 | int * coeff_result_type = (int *) malloc(num_blocks*3*sizeof(int)); |
---|
| 3661 | double * coeff_unpred_data[3]; |
---|
| 3662 | double * coeff_unpredictable_data = (double *) malloc(num_blocks*3*sizeof(double)); |
---|
| 3663 | double precision[3]; |
---|
| 3664 | precision[0] = precision_a, precision[1] = precision_b, precision[2] = precision_c; |
---|
| 3665 | for(int i=0; i<3; i++){ |
---|
| 3666 | coeff_type[i] = coeff_result_type + i * num_blocks; |
---|
| 3667 | coeff_unpred_data[i] = coeff_unpredictable_data + i * num_blocks; |
---|
| 3668 | } |
---|
| 3669 | int coeff_index = 0; |
---|
| 3670 | unsigned int coeff_unpredictable_count[3] = {0}; |
---|
| 3671 | if(use_mean){ |
---|
| 3672 | type = result_type; |
---|
| 3673 | int intvCapacity_sz = intvCapacity - 2; |
---|
| 3674 | for(size_t i=0; i<num_x; i++){ |
---|
| 3675 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 3676 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 3677 | data_pos = oriData + offset_x * dim0_offset; |
---|
| 3678 | |
---|
| 3679 | cur_pb_buf_pos = cur_pb_buf + strip_dim0_offset + 1; |
---|
| 3680 | next_pb_buf_pos = next_pb_buf + 1; |
---|
| 3681 | double * pb_pos = cur_pb_buf_pos; |
---|
| 3682 | double * next_pb_pos = next_pb_buf_pos; |
---|
| 3683 | |
---|
| 3684 | for(size_t j=0; j<num_y; j++){ |
---|
| 3685 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 3686 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 3687 | |
---|
| 3688 | /*sampling: decide which predictor to use (regression or lorenzo)*/ |
---|
| 3689 | { |
---|
| 3690 | double * cur_data_pos; |
---|
| 3691 | double curData; |
---|
| 3692 | double pred_reg, pred_sz; |
---|
| 3693 | double err_sz = 0.0, err_reg = 0.0; |
---|
| 3694 | // [1, 1] [3, 3] [5, 5] [7, 7] [9, 9] |
---|
| 3695 | // [1, 9] [3, 7] [7, 3] [9, 1] |
---|
| 3696 | int count = 0; |
---|
| 3697 | for(int i=1; i<current_blockcount_x; i+=2){ |
---|
| 3698 | cur_data_pos = data_pos + i * dim0_offset + i; |
---|
| 3699 | curData = *cur_data_pos; |
---|
| 3700 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
| 3701 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c]; |
---|
| 3702 | |
---|
| 3703 | err_sz += MIN(fabs(pred_sz - curData) + realPrecision*0.81, fabs(mean - curData)); |
---|
| 3704 | |
---|
| 3705 | err_reg += fabs(pred_reg - curData); |
---|
| 3706 | |
---|
| 3707 | cur_data_pos = data_pos + i * dim0_offset + (block_size - i); |
---|
| 3708 | curData = *cur_data_pos; |
---|
| 3709 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
| 3710 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * (block_size - i) + reg_params_pos[params_offset_c]; |
---|
| 3711 | err_sz += MIN(fabs(pred_sz - curData) + realPrecision*0.81, fabs(mean - curData)); |
---|
| 3712 | |
---|
| 3713 | err_reg += fabs(pred_reg - curData); |
---|
| 3714 | |
---|
| 3715 | count += 2; |
---|
| 3716 | } |
---|
| 3717 | |
---|
| 3718 | use_reg = (err_reg < err_sz); |
---|
| 3719 | } |
---|
| 3720 | if(use_reg) |
---|
| 3721 | { |
---|
| 3722 | { |
---|
| 3723 | /*predict coefficients in current block via previous reg_block*/ |
---|
| 3724 | double cur_coeff; |
---|
| 3725 | double diff, itvNum; |
---|
| 3726 | for(int e=0; e<3; e++){ |
---|
| 3727 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
| 3728 | diff = cur_coeff - last_coeffcients[e]; |
---|
| 3729 | itvNum = fabs(diff)/precision[e] + 1; |
---|
| 3730 | if (itvNum < coeff_intvCapacity_sz){ |
---|
| 3731 | if (diff < 0) itvNum = -itvNum; |
---|
| 3732 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
| 3733 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
| 3734 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3735 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
| 3736 | coeff_type[e][coeff_index] = 0; |
---|
| 3737 | last_coeffcients[e] = cur_coeff; |
---|
| 3738 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 3739 | } |
---|
| 3740 | } |
---|
| 3741 | else{ |
---|
| 3742 | coeff_type[e][coeff_index] = 0; |
---|
| 3743 | last_coeffcients[e] = cur_coeff; |
---|
| 3744 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 3745 | } |
---|
| 3746 | } |
---|
| 3747 | coeff_index ++; |
---|
| 3748 | } |
---|
| 3749 | double curData; |
---|
| 3750 | double pred; |
---|
| 3751 | double itvNum; |
---|
| 3752 | double diff; |
---|
| 3753 | size_t index = 0; |
---|
| 3754 | size_t block_unpredictable_count = 0; |
---|
| 3755 | double * cur_data_pos = data_pos; |
---|
| 3756 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 3757 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
| 3758 | curData = *cur_data_pos; |
---|
| 3759 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 3760 | diff = curData - pred; |
---|
| 3761 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3762 | if (itvNum < intvCapacity){ |
---|
| 3763 | if (diff < 0) itvNum = -itvNum; |
---|
| 3764 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 3765 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 3766 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3767 | if(fabs(curData - pred)>realPrecision){ |
---|
| 3768 | type[index] = 0; |
---|
| 3769 | pred = curData; |
---|
| 3770 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 3771 | } |
---|
| 3772 | } |
---|
| 3773 | else{ |
---|
| 3774 | type[index] = 0; |
---|
| 3775 | pred = curData; |
---|
| 3776 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 3777 | } |
---|
| 3778 | index ++; |
---|
| 3779 | cur_data_pos ++; |
---|
| 3780 | } |
---|
| 3781 | /*dealing with the last jj (boundary)*/ |
---|
| 3782 | { |
---|
| 3783 | size_t jj = current_blockcount_y - 1; |
---|
| 3784 | curData = *cur_data_pos; |
---|
| 3785 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 3786 | diff = curData - pred; |
---|
| 3787 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3788 | if (itvNum < intvCapacity){ |
---|
| 3789 | if (diff < 0) itvNum = -itvNum; |
---|
| 3790 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 3791 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 3792 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3793 | if(fabs(curData - pred)>realPrecision){ |
---|
| 3794 | type[index] = 0; |
---|
| 3795 | pred = curData; |
---|
| 3796 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 3797 | } |
---|
| 3798 | } |
---|
| 3799 | else{ |
---|
| 3800 | type[index] = 0; |
---|
| 3801 | pred = curData; |
---|
| 3802 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 3803 | } |
---|
| 3804 | |
---|
| 3805 | // assign value to block surfaces |
---|
| 3806 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
| 3807 | index ++; |
---|
| 3808 | cur_data_pos ++; |
---|
| 3809 | } |
---|
| 3810 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
| 3811 | } |
---|
| 3812 | /*dealing with the last ii (boundary)*/ |
---|
| 3813 | { |
---|
| 3814 | size_t ii = current_blockcount_x - 1; |
---|
| 3815 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
| 3816 | curData = *cur_data_pos; |
---|
| 3817 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 3818 | diff = curData - pred; |
---|
| 3819 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3820 | if (itvNum < intvCapacity){ |
---|
| 3821 | if (diff < 0) itvNum = -itvNum; |
---|
| 3822 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 3823 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 3824 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3825 | if(fabs(curData - pred)>realPrecision){ |
---|
| 3826 | type[index] = 0; |
---|
| 3827 | pred = curData; |
---|
| 3828 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 3829 | } |
---|
| 3830 | } |
---|
| 3831 | else{ |
---|
| 3832 | type[index] = 0; |
---|
| 3833 | pred = curData; |
---|
| 3834 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 3835 | } |
---|
| 3836 | // assign value to next prediction buffer |
---|
| 3837 | next_pb_pos[jj] = pred; |
---|
| 3838 | index ++; |
---|
| 3839 | cur_data_pos ++; |
---|
| 3840 | } |
---|
| 3841 | /*dealing with the last jj (boundary)*/ |
---|
| 3842 | { |
---|
| 3843 | size_t jj = current_blockcount_y - 1; |
---|
| 3844 | curData = *cur_data_pos; |
---|
| 3845 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 3846 | diff = curData - pred; |
---|
| 3847 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3848 | if (itvNum < intvCapacity){ |
---|
| 3849 | if (diff < 0) itvNum = -itvNum; |
---|
| 3850 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 3851 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 3852 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3853 | if(fabs(curData - pred)>realPrecision){ |
---|
| 3854 | type[index] = 0; |
---|
| 3855 | pred = curData; |
---|
| 3856 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 3857 | } |
---|
| 3858 | } |
---|
| 3859 | else{ |
---|
| 3860 | type[index] = 0; |
---|
| 3861 | pred = curData; |
---|
| 3862 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 3863 | } |
---|
| 3864 | |
---|
| 3865 | // assign value to block surfaces |
---|
| 3866 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
| 3867 | // assign value to next prediction buffer |
---|
| 3868 | next_pb_pos[jj] = pred; |
---|
| 3869 | |
---|
| 3870 | index ++; |
---|
| 3871 | cur_data_pos ++; |
---|
| 3872 | } |
---|
| 3873 | } // end ii == -1 |
---|
| 3874 | unpredictable_count = block_unpredictable_count; |
---|
| 3875 | total_unpred += unpredictable_count; |
---|
| 3876 | unpredictable_data += unpredictable_count; |
---|
| 3877 | reg_count ++; |
---|
| 3878 | }// end use_reg |
---|
| 3879 | else{ |
---|
| 3880 | // use SZ |
---|
| 3881 | // SZ predication |
---|
| 3882 | unpredictable_count = 0; |
---|
| 3883 | double * cur_pb_pos = pb_pos; |
---|
| 3884 | double * cur_data_pos = data_pos; |
---|
| 3885 | double curData; |
---|
| 3886 | double pred2D; |
---|
| 3887 | double itvNum, diff; |
---|
| 3888 | size_t index = 0; |
---|
| 3889 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 3890 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 3891 | curData = *cur_data_pos; |
---|
| 3892 | if(fabs(curData - mean) <= realPrecision){ |
---|
| 3893 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
| 3894 | type[index] = intvRadius; |
---|
| 3895 | *cur_pb_pos = mean; |
---|
| 3896 | } |
---|
| 3897 | else |
---|
| 3898 | { |
---|
| 3899 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
| 3900 | diff = curData - pred2D; |
---|
| 3901 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3902 | if (itvNum < intvCapacity_sz){ |
---|
| 3903 | if (diff < 0) itvNum = -itvNum; |
---|
| 3904 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 3905 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 3906 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
| 3907 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3908 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 3909 | type[index] = 0; |
---|
| 3910 | *cur_pb_pos = curData; |
---|
| 3911 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3912 | } |
---|
| 3913 | } |
---|
| 3914 | else{ |
---|
| 3915 | type[index] = 0; |
---|
| 3916 | *cur_pb_pos = curData; |
---|
| 3917 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3918 | } |
---|
| 3919 | } |
---|
| 3920 | index ++; |
---|
| 3921 | cur_pb_pos ++; |
---|
| 3922 | cur_data_pos ++; |
---|
| 3923 | } |
---|
| 3924 | cur_pb_pos += strip_dim0_offset - current_blockcount_y; |
---|
| 3925 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
| 3926 | } |
---|
| 3927 | /*dealing with the last ii (boundary)*/ |
---|
| 3928 | { |
---|
| 3929 | // ii == current_blockcount_x - 1 |
---|
| 3930 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 3931 | curData = *cur_data_pos; |
---|
| 3932 | if(fabs(curData - mean) <= realPrecision){ |
---|
| 3933 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
| 3934 | type[index] = intvRadius; |
---|
| 3935 | *cur_pb_pos = mean; |
---|
| 3936 | } |
---|
| 3937 | else |
---|
| 3938 | { |
---|
| 3939 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
| 3940 | diff = curData - pred2D; |
---|
| 3941 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3942 | if (itvNum < intvCapacity_sz){ |
---|
| 3943 | if (diff < 0) itvNum = -itvNum; |
---|
| 3944 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 3945 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 3946 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
| 3947 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3948 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 3949 | type[index] = 0; |
---|
| 3950 | *cur_pb_pos = curData; |
---|
| 3951 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3952 | } |
---|
| 3953 | } |
---|
| 3954 | else{ |
---|
| 3955 | type[index] = 0; |
---|
| 3956 | *cur_pb_pos = curData; |
---|
| 3957 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3958 | } |
---|
| 3959 | } |
---|
| 3960 | next_pb_pos[jj] = *cur_pb_pos; |
---|
| 3961 | index ++; |
---|
| 3962 | cur_pb_pos ++; |
---|
| 3963 | cur_data_pos ++; |
---|
| 3964 | } |
---|
| 3965 | } |
---|
| 3966 | total_unpred += unpredictable_count; |
---|
| 3967 | unpredictable_data += unpredictable_count; |
---|
| 3968 | // change indicator |
---|
| 3969 | indicator_pos[j] = 1; |
---|
| 3970 | }// end SZ |
---|
| 3971 | reg_params_pos ++; |
---|
| 3972 | data_pos += current_blockcount_y; |
---|
| 3973 | pb_pos += current_blockcount_y; |
---|
| 3974 | next_pb_pos += current_blockcount_y; |
---|
| 3975 | type += current_blockcount_x * current_blockcount_y; |
---|
| 3976 | }// end j |
---|
| 3977 | indicator_pos += num_y; |
---|
| 3978 | double * tmp; |
---|
| 3979 | tmp = cur_pb_buf; |
---|
| 3980 | cur_pb_buf = next_pb_buf; |
---|
| 3981 | next_pb_buf = tmp; |
---|
| 3982 | }// end i |
---|
| 3983 | }// end use mean |
---|
| 3984 | else{ |
---|
| 3985 | type = result_type; |
---|
| 3986 | int intvCapacity_sz = intvCapacity - 2; |
---|
| 3987 | for(size_t i=0; i<num_x; i++){ |
---|
| 3988 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 3989 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 3990 | data_pos = oriData + offset_x * dim0_offset; |
---|
| 3991 | |
---|
| 3992 | cur_pb_buf_pos = cur_pb_buf + strip_dim0_offset + 1; |
---|
| 3993 | next_pb_buf_pos = next_pb_buf + 1; |
---|
| 3994 | double * pb_pos = cur_pb_buf_pos; |
---|
| 3995 | double * next_pb_pos = next_pb_buf_pos; |
---|
| 3996 | |
---|
| 3997 | for(size_t j=0; j<num_y; j++){ |
---|
| 3998 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 3999 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 4000 | /*sampling*/ |
---|
| 4001 | { |
---|
| 4002 | // sample [2i + 1, 2i + 1] [2i + 1, bs - 2i] |
---|
| 4003 | double * cur_data_pos; |
---|
| 4004 | double curData; |
---|
| 4005 | double pred_reg, pred_sz; |
---|
| 4006 | double err_sz = 0.0, err_reg = 0.0; |
---|
| 4007 | // [1, 1] [3, 3] [5, 5] [7, 7] [9, 9] |
---|
| 4008 | // [1, 9] [3, 7] [7, 3] [9, 1] |
---|
| 4009 | int count = 0; |
---|
| 4010 | for(int i=1; i<current_blockcount_x; i+=2){ |
---|
| 4011 | cur_data_pos = data_pos + i * dim0_offset + i; |
---|
| 4012 | curData = *cur_data_pos; |
---|
| 4013 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
| 4014 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c]; |
---|
| 4015 | err_sz += fabs(pred_sz - curData); |
---|
| 4016 | err_reg += fabs(pred_reg - curData); |
---|
| 4017 | |
---|
| 4018 | cur_data_pos = data_pos + i * dim0_offset + (block_size - i); |
---|
| 4019 | curData = *cur_data_pos; |
---|
| 4020 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
| 4021 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * (block_size - i) + reg_params_pos[params_offset_c]; |
---|
| 4022 | err_sz += fabs(pred_sz - curData); |
---|
| 4023 | err_reg += fabs(pred_reg - curData); |
---|
| 4024 | |
---|
| 4025 | count += 2; |
---|
| 4026 | } |
---|
| 4027 | err_sz += realPrecision * count * 0.81; |
---|
| 4028 | use_reg = (err_reg < err_sz); |
---|
| 4029 | |
---|
| 4030 | } |
---|
| 4031 | if(use_reg) |
---|
| 4032 | { |
---|
| 4033 | { |
---|
| 4034 | /*predict coefficients in current block via previous reg_block*/ |
---|
| 4035 | double cur_coeff; |
---|
| 4036 | double diff, itvNum; |
---|
| 4037 | for(int e=0; e<3; e++){ |
---|
| 4038 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
| 4039 | diff = cur_coeff - last_coeffcients[e]; |
---|
| 4040 | itvNum = fabs(diff)/precision[e] + 1; |
---|
| 4041 | if (itvNum < coeff_intvCapacity_sz){ |
---|
| 4042 | if (diff < 0) itvNum = -itvNum; |
---|
| 4043 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
| 4044 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
| 4045 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4046 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
| 4047 | coeff_type[e][coeff_index] = 0; |
---|
| 4048 | last_coeffcients[e] = cur_coeff; |
---|
| 4049 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 4050 | } |
---|
| 4051 | } |
---|
| 4052 | else{ |
---|
| 4053 | coeff_type[e][coeff_index] = 0; |
---|
| 4054 | last_coeffcients[e] = cur_coeff; |
---|
| 4055 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 4056 | } |
---|
| 4057 | } |
---|
| 4058 | coeff_index ++; |
---|
| 4059 | } |
---|
| 4060 | double curData; |
---|
| 4061 | double pred; |
---|
| 4062 | double itvNum; |
---|
| 4063 | double diff; |
---|
| 4064 | size_t index = 0; |
---|
| 4065 | size_t block_unpredictable_count = 0; |
---|
| 4066 | double * cur_data_pos = data_pos; |
---|
| 4067 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 4068 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
| 4069 | curData = *cur_data_pos; |
---|
| 4070 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4071 | diff = curData - pred; |
---|
| 4072 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4073 | if (itvNum < intvCapacity){ |
---|
| 4074 | if (diff < 0) itvNum = -itvNum; |
---|
| 4075 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4076 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4077 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4078 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4079 | type[index] = 0; |
---|
| 4080 | pred = curData; |
---|
| 4081 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4082 | } |
---|
| 4083 | } |
---|
| 4084 | else{ |
---|
| 4085 | type[index] = 0; |
---|
| 4086 | pred = curData; |
---|
| 4087 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4088 | } |
---|
| 4089 | index ++; |
---|
| 4090 | cur_data_pos ++; |
---|
| 4091 | } |
---|
| 4092 | /*dealing with the last jj (boundary)*/ |
---|
| 4093 | { |
---|
| 4094 | // jj == current_blockcount_y - 1 |
---|
| 4095 | size_t jj = current_blockcount_y - 1; |
---|
| 4096 | curData = *cur_data_pos; |
---|
| 4097 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4098 | diff = curData - pred; |
---|
| 4099 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4100 | if (itvNum < intvCapacity){ |
---|
| 4101 | if (diff < 0) itvNum = -itvNum; |
---|
| 4102 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4103 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4104 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4105 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4106 | type[index] = 0; |
---|
| 4107 | pred = curData; |
---|
| 4108 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4109 | } |
---|
| 4110 | } |
---|
| 4111 | else{ |
---|
| 4112 | type[index] = 0; |
---|
| 4113 | pred = curData; |
---|
| 4114 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4115 | } |
---|
| 4116 | |
---|
| 4117 | // assign value to block surfaces |
---|
| 4118 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
| 4119 | index ++; |
---|
| 4120 | cur_data_pos ++; |
---|
| 4121 | } |
---|
| 4122 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
| 4123 | } |
---|
| 4124 | /*dealing with the last ii (boundary)*/ |
---|
| 4125 | { |
---|
| 4126 | size_t ii = current_blockcount_x - 1; |
---|
| 4127 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
| 4128 | curData = *cur_data_pos; |
---|
| 4129 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4130 | diff = curData - pred; |
---|
| 4131 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4132 | if (itvNum < intvCapacity){ |
---|
| 4133 | if (diff < 0) itvNum = -itvNum; |
---|
| 4134 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4135 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4136 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4137 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4138 | type[index] = 0; |
---|
| 4139 | pred = curData; |
---|
| 4140 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4141 | } |
---|
| 4142 | } |
---|
| 4143 | else{ |
---|
| 4144 | type[index] = 0; |
---|
| 4145 | pred = curData; |
---|
| 4146 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4147 | } |
---|
| 4148 | // assign value to next prediction buffer |
---|
| 4149 | next_pb_pos[jj] = pred; |
---|
| 4150 | index ++; |
---|
| 4151 | cur_data_pos ++; |
---|
| 4152 | } |
---|
| 4153 | /*dealing with the last jj (boundary)*/ |
---|
| 4154 | { |
---|
| 4155 | // jj == current_blockcount_y - 1 |
---|
| 4156 | size_t jj = current_blockcount_y - 1; |
---|
| 4157 | curData = *cur_data_pos; |
---|
| 4158 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4159 | diff = curData - pred; |
---|
| 4160 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4161 | if (itvNum < intvCapacity){ |
---|
| 4162 | if (diff < 0) itvNum = -itvNum; |
---|
| 4163 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4164 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4165 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4166 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4167 | type[index] = 0; |
---|
| 4168 | pred = curData; |
---|
| 4169 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4170 | } |
---|
| 4171 | } |
---|
| 4172 | else{ |
---|
| 4173 | type[index] = 0; |
---|
| 4174 | pred = curData; |
---|
| 4175 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4176 | } |
---|
| 4177 | |
---|
| 4178 | // assign value to block surfaces |
---|
| 4179 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
| 4180 | // assign value to next prediction buffer |
---|
| 4181 | next_pb_pos[jj] = pred; |
---|
| 4182 | |
---|
| 4183 | index ++; |
---|
| 4184 | cur_data_pos ++; |
---|
| 4185 | } |
---|
| 4186 | } // end ii == -1 |
---|
| 4187 | unpredictable_count = block_unpredictable_count; |
---|
| 4188 | total_unpred += unpredictable_count; |
---|
| 4189 | unpredictable_data += unpredictable_count; |
---|
| 4190 | reg_count ++; |
---|
| 4191 | }// end use_reg |
---|
| 4192 | else{ |
---|
| 4193 | // use SZ |
---|
| 4194 | // SZ predication |
---|
| 4195 | unpredictable_count = 0; |
---|
| 4196 | double * cur_pb_pos = pb_pos; |
---|
| 4197 | double * cur_data_pos = data_pos; |
---|
| 4198 | double curData; |
---|
| 4199 | double pred2D; |
---|
| 4200 | double itvNum, diff; |
---|
| 4201 | size_t index = 0; |
---|
| 4202 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 4203 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 4204 | curData = *cur_data_pos; |
---|
| 4205 | |
---|
| 4206 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
| 4207 | diff = curData - pred2D; |
---|
| 4208 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4209 | if (itvNum < intvCapacity_sz){ |
---|
| 4210 | if (diff < 0) itvNum = -itvNum; |
---|
| 4211 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4212 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 4213 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4214 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 4215 | type[index] = 0; |
---|
| 4216 | *cur_pb_pos = curData; |
---|
| 4217 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4218 | } |
---|
| 4219 | } |
---|
| 4220 | else{ |
---|
| 4221 | type[index] = 0; |
---|
| 4222 | *cur_pb_pos = curData; |
---|
| 4223 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4224 | } |
---|
| 4225 | |
---|
| 4226 | index ++; |
---|
| 4227 | cur_pb_pos ++; |
---|
| 4228 | cur_data_pos ++; |
---|
| 4229 | } |
---|
| 4230 | cur_pb_pos += strip_dim0_offset - current_blockcount_y; |
---|
| 4231 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
| 4232 | } |
---|
| 4233 | /*dealing with the last ii (boundary)*/ |
---|
| 4234 | { |
---|
| 4235 | // ii == current_blockcount_x - 1 |
---|
| 4236 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 4237 | curData = *cur_data_pos; |
---|
| 4238 | |
---|
| 4239 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
| 4240 | diff = curData - pred2D; |
---|
| 4241 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4242 | if (itvNum < intvCapacity_sz){ |
---|
| 4243 | if (diff < 0) itvNum = -itvNum; |
---|
| 4244 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4245 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 4246 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4247 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 4248 | type[index] = 0; |
---|
| 4249 | *cur_pb_pos = curData; |
---|
| 4250 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4251 | } |
---|
| 4252 | } |
---|
| 4253 | else{ |
---|
| 4254 | type[index] = 0; |
---|
| 4255 | *cur_pb_pos = curData; |
---|
| 4256 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4257 | } |
---|
| 4258 | next_pb_pos[jj] = *cur_pb_pos; |
---|
| 4259 | index ++; |
---|
| 4260 | cur_pb_pos ++; |
---|
| 4261 | cur_data_pos ++; |
---|
| 4262 | } |
---|
| 4263 | } |
---|
| 4264 | total_unpred += unpredictable_count; |
---|
| 4265 | unpredictable_data += unpredictable_count; |
---|
| 4266 | // change indicator |
---|
| 4267 | indicator_pos[j] = 1; |
---|
| 4268 | }// end SZ |
---|
| 4269 | reg_params_pos ++; |
---|
| 4270 | data_pos += current_blockcount_y; |
---|
| 4271 | pb_pos += current_blockcount_y; |
---|
| 4272 | next_pb_pos += current_blockcount_y; |
---|
| 4273 | type += current_blockcount_x * current_blockcount_y; |
---|
| 4274 | }// end j |
---|
| 4275 | indicator_pos += num_y; |
---|
| 4276 | double * tmp; |
---|
| 4277 | tmp = cur_pb_buf; |
---|
| 4278 | cur_pb_buf = next_pb_buf; |
---|
| 4279 | next_pb_buf = tmp; |
---|
| 4280 | }// end i |
---|
| 4281 | } |
---|
| 4282 | free(prediction_buffer_1); |
---|
| 4283 | free(prediction_buffer_2); |
---|
| 4284 | |
---|
| 4285 | int stateNum = 2*quantization_intervals; |
---|
| 4286 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
| 4287 | |
---|
| 4288 | size_t nodeCount = 0; |
---|
| 4289 | size_t i = 0; |
---|
| 4290 | init(huffmanTree, result_type, num_elements); |
---|
| 4291 | for (i = 0; i < stateNum; i++) |
---|
| 4292 | if (huffmanTree->code[i]) nodeCount++; |
---|
| 4293 | nodeCount = nodeCount*2-1; |
---|
| 4294 | |
---|
| 4295 | unsigned char *treeBytes; |
---|
| 4296 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
| 4297 | |
---|
| 4298 | unsigned int meta_data_offset = 3 + 1 + MetaDataByteLength; |
---|
| 4299 | // total size metadata # elements real precision intervals nodeCount huffman block index unpredicatable count mean unpred size elements |
---|
| 4300 | unsigned char * result = (unsigned char *) calloc(meta_data_offset + exe_params->SZ_SIZE_TYPE + sizeof(double) + sizeof(int) + sizeof(int) + treeByteSize + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(double) + total_unpred * sizeof(double) + num_elements * sizeof(int), 1); |
---|
| 4301 | unsigned char * result_pos = result; |
---|
| 4302 | initRandomAccessBytes(result_pos); |
---|
| 4303 | result_pos += meta_data_offset; |
---|
| 4304 | |
---|
| 4305 | sizeToBytes(result_pos, num_elements); |
---|
| 4306 | result_pos += exe_params->SZ_SIZE_TYPE; |
---|
| 4307 | |
---|
| 4308 | intToBytes_bigEndian(result_pos, block_size); |
---|
| 4309 | result_pos += sizeof(int); |
---|
| 4310 | doubleToBytes(result_pos, realPrecision); |
---|
| 4311 | result_pos += sizeof(double); |
---|
| 4312 | intToBytes_bigEndian(result_pos, quantization_intervals); |
---|
| 4313 | result_pos += sizeof(int); |
---|
| 4314 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
| 4315 | result_pos += sizeof(int); |
---|
| 4316 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
| 4317 | result_pos += sizeof(int); |
---|
| 4318 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
| 4319 | result_pos += treeByteSize; |
---|
| 4320 | free(treeBytes); |
---|
| 4321 | |
---|
| 4322 | memcpy(result_pos, &use_mean, sizeof(unsigned char)); |
---|
| 4323 | result_pos += sizeof(unsigned char); |
---|
| 4324 | memcpy(result_pos, &mean, sizeof(double)); |
---|
| 4325 | result_pos += sizeof(double); |
---|
| 4326 | |
---|
| 4327 | size_t indicator_size = convertIntArray2ByteArray_fast_1b_to_result(indicator, num_blocks, result_pos); |
---|
| 4328 | result_pos += indicator_size; |
---|
| 4329 | |
---|
| 4330 | //convert the lead/mid/resi to byte stream |
---|
| 4331 | if(reg_count>0){ |
---|
| 4332 | for(int e=0; e<3; e++){ |
---|
| 4333 | int stateNum = 2*coeff_intvCapacity_sz; |
---|
| 4334 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
| 4335 | size_t nodeCount = 0; |
---|
| 4336 | init(huffmanTree, coeff_type[e], reg_count); |
---|
| 4337 | size_t i = 0; |
---|
| 4338 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
| 4339 | if (huffmanTree->code[i]) nodeCount++; |
---|
| 4340 | nodeCount = nodeCount*2-1; |
---|
| 4341 | unsigned char *treeBytes; |
---|
| 4342 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
| 4343 | doubleToBytes(result_pos, precision[e]); |
---|
| 4344 | result_pos += sizeof(double); |
---|
| 4345 | intToBytes_bigEndian(result_pos, coeff_intvRadius); |
---|
| 4346 | result_pos += sizeof(int); |
---|
| 4347 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
| 4348 | result_pos += sizeof(int); |
---|
| 4349 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
| 4350 | result_pos += sizeof(int); |
---|
| 4351 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
| 4352 | result_pos += treeByteSize; |
---|
| 4353 | free(treeBytes); |
---|
| 4354 | size_t typeArray_size = 0; |
---|
| 4355 | encode(huffmanTree, coeff_type[e], reg_count, result_pos + sizeof(size_t), &typeArray_size); |
---|
| 4356 | sizeToBytes(result_pos, typeArray_size); |
---|
| 4357 | result_pos += sizeof(size_t) + typeArray_size; |
---|
| 4358 | intToBytes_bigEndian(result_pos, coeff_unpredictable_count[e]); |
---|
| 4359 | result_pos += sizeof(int); |
---|
| 4360 | memcpy(result_pos, coeff_unpred_data[e], coeff_unpredictable_count[e]*sizeof(double)); |
---|
| 4361 | result_pos += coeff_unpredictable_count[e]*sizeof(double); |
---|
| 4362 | SZ_ReleaseHuffman(huffmanTree); |
---|
| 4363 | } |
---|
| 4364 | } |
---|
| 4365 | free(coeff_result_type); |
---|
| 4366 | free(coeff_unpredictable_data); |
---|
| 4367 | |
---|
| 4368 | //record the number of unpredictable data and also store them |
---|
| 4369 | memcpy(result_pos, &total_unpred, sizeof(size_t)); |
---|
| 4370 | result_pos += sizeof(size_t); |
---|
| 4371 | memcpy(result_pos, result_unpredictable_data, total_unpred * sizeof(double)); |
---|
| 4372 | result_pos += total_unpred * sizeof(double); |
---|
| 4373 | size_t typeArray_size = 0; |
---|
| 4374 | encode(huffmanTree, result_type, num_elements, result_pos, &typeArray_size); |
---|
| 4375 | result_pos += typeArray_size; |
---|
| 4376 | |
---|
| 4377 | size_t totalEncodeSize = result_pos - result; |
---|
| 4378 | free(indicator); |
---|
| 4379 | free(result_unpredictable_data); |
---|
| 4380 | free(result_type); |
---|
| 4381 | free(reg_params); |
---|
| 4382 | |
---|
| 4383 | SZ_ReleaseHuffman(huffmanTree); |
---|
| 4384 | *comp_size = totalEncodeSize; |
---|
| 4385 | |
---|
| 4386 | return result; |
---|
| 4387 | } |
---|
| 4388 | |
---|
| 4389 | unsigned char * SZ_compress_double_3D_MDQ_nonblocked_with_blocked_regression(double *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, size_t * comp_size){ |
---|
| 4390 | |
---|
| 4391 | unsigned int quantization_intervals; |
---|
| 4392 | double sz_sample_correct_freq = -1;//0.5; //-1 |
---|
| 4393 | double dense_pos; |
---|
| 4394 | double mean_flush_freq; |
---|
| 4395 | unsigned char use_mean = 0; |
---|
| 4396 | |
---|
| 4397 | // calculate block dims |
---|
| 4398 | size_t num_x, num_y, num_z; |
---|
| 4399 | size_t block_size = 6; |
---|
| 4400 | SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r1, num_x, block_size); |
---|
| 4401 | SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r2, num_y, block_size); |
---|
| 4402 | SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r3, num_z, block_size); |
---|
| 4403 | |
---|
| 4404 | size_t split_index_x, split_index_y, split_index_z; |
---|
| 4405 | size_t early_blockcount_x, early_blockcount_y, early_blockcount_z; |
---|
| 4406 | size_t late_blockcount_x, late_blockcount_y, late_blockcount_z; |
---|
| 4407 | SZ_COMPUTE_BLOCKCOUNT(r1, num_x, split_index_x, early_blockcount_x, late_blockcount_x); |
---|
| 4408 | SZ_COMPUTE_BLOCKCOUNT(r2, num_y, split_index_y, early_blockcount_y, late_blockcount_y); |
---|
| 4409 | SZ_COMPUTE_BLOCKCOUNT(r3, num_z, split_index_z, early_blockcount_z, late_blockcount_z); |
---|
| 4410 | |
---|
| 4411 | size_t max_num_block_elements = early_blockcount_x * early_blockcount_y * early_blockcount_z; |
---|
| 4412 | size_t num_blocks = num_x * num_y * num_z; |
---|
| 4413 | size_t num_elements = r1 * r2 * r3; |
---|
| 4414 | |
---|
| 4415 | size_t dim0_offset = r2 * r3; |
---|
| 4416 | size_t dim1_offset = r3; |
---|
| 4417 | |
---|
| 4418 | int * result_type = (int *) malloc(num_elements * sizeof(int)); |
---|
| 4419 | size_t unpred_data_max_size = max_num_block_elements; |
---|
| 4420 | double * result_unpredictable_data = (double *) malloc(unpred_data_max_size * sizeof(double) * num_blocks); |
---|
| 4421 | size_t total_unpred = 0; |
---|
| 4422 | size_t unpredictable_count; |
---|
| 4423 | size_t max_unpred_count = 0; |
---|
| 4424 | double * data_pos = oriData; |
---|
| 4425 | int * type = result_type; |
---|
| 4426 | size_t type_offset; |
---|
| 4427 | size_t offset_x, offset_y, offset_z; |
---|
| 4428 | size_t current_blockcount_x, current_blockcount_y, current_blockcount_z; |
---|
| 4429 | |
---|
| 4430 | double * reg_params = (double *) malloc(num_blocks * 4 * sizeof(double)); |
---|
| 4431 | double * reg_params_pos = reg_params; |
---|
| 4432 | // move regression part out |
---|
| 4433 | size_t params_offset_b = num_blocks; |
---|
| 4434 | size_t params_offset_c = 2*num_blocks; |
---|
| 4435 | size_t params_offset_d = 3*num_blocks; |
---|
| 4436 | for(size_t i=0; i<num_x; i++){ |
---|
| 4437 | for(size_t j=0; j<num_y; j++){ |
---|
| 4438 | for(size_t k=0; k<num_z; k++){ |
---|
| 4439 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 4440 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 4441 | current_blockcount_z = (k < split_index_z) ? early_blockcount_z : late_blockcount_z; |
---|
| 4442 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 4443 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 4444 | offset_z = (k < split_index_z) ? k * early_blockcount_z : k * late_blockcount_z + split_index_z; |
---|
| 4445 | |
---|
| 4446 | data_pos = oriData + offset_x * dim0_offset + offset_y * dim1_offset + offset_z; |
---|
| 4447 | /*Calculate regression coefficients*/ |
---|
| 4448 | { |
---|
| 4449 | double * cur_data_pos = data_pos; |
---|
| 4450 | double fx = 0.0; |
---|
| 4451 | double fy = 0.0; |
---|
| 4452 | double fz = 0.0; |
---|
| 4453 | double f = 0; |
---|
| 4454 | double sum_x, sum_y; |
---|
| 4455 | double curData; |
---|
| 4456 | for(size_t i=0; i<current_blockcount_x; i++){ |
---|
| 4457 | sum_x = 0; |
---|
| 4458 | for(size_t j=0; j<current_blockcount_y; j++){ |
---|
| 4459 | sum_y = 0; |
---|
| 4460 | for(size_t k=0; k<current_blockcount_z; k++){ |
---|
| 4461 | curData = *cur_data_pos; |
---|
| 4462 | // f += curData; |
---|
| 4463 | // fx += curData * i; |
---|
| 4464 | // fy += curData * j; |
---|
| 4465 | // fz += curData * k; |
---|
| 4466 | sum_y += curData; |
---|
| 4467 | fz += curData * k; |
---|
| 4468 | cur_data_pos ++; |
---|
| 4469 | } |
---|
| 4470 | fy += sum_y * j; |
---|
| 4471 | sum_x += sum_y; |
---|
| 4472 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 4473 | } |
---|
| 4474 | fx += sum_x * i; |
---|
| 4475 | f += sum_x; |
---|
| 4476 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
| 4477 | } |
---|
| 4478 | double coeff = 1.0 / (current_blockcount_x * current_blockcount_y * current_blockcount_z); |
---|
| 4479 | reg_params_pos[0] = (2 * fx / (current_blockcount_x - 1) - f) * 6 * coeff / (current_blockcount_x + 1); |
---|
| 4480 | reg_params_pos[params_offset_b] = (2 * fy / (current_blockcount_y - 1) - f) * 6 * coeff / (current_blockcount_y + 1); |
---|
| 4481 | reg_params_pos[params_offset_c] = (2 * fz / (current_blockcount_z - 1) - f) * 6 * coeff / (current_blockcount_z + 1); |
---|
| 4482 | reg_params_pos[params_offset_d] = f * coeff - ((current_blockcount_x - 1) * reg_params_pos[0] / 2 + (current_blockcount_y - 1) * reg_params_pos[params_offset_b] / 2 + (current_blockcount_z - 1) * reg_params_pos[params_offset_c] / 2); |
---|
| 4483 | } |
---|
| 4484 | reg_params_pos ++; |
---|
| 4485 | } |
---|
| 4486 | } |
---|
| 4487 | } |
---|
| 4488 | |
---|
| 4489 | //Compress coefficient arrays |
---|
| 4490 | double precision_a, precision_b, precision_c, precision_d; |
---|
| 4491 | double rel_param_err = 0.025; |
---|
| 4492 | precision_a = rel_param_err * realPrecision / late_blockcount_x; |
---|
| 4493 | precision_b = rel_param_err * realPrecision / late_blockcount_y; |
---|
| 4494 | precision_c = rel_param_err * realPrecision / late_blockcount_z; |
---|
| 4495 | precision_d = rel_param_err * realPrecision; |
---|
| 4496 | |
---|
| 4497 | if(exe_params->optQuantMode==1) |
---|
| 4498 | { |
---|
| 4499 | quantization_intervals = optimize_intervals_double_3D_with_freq_and_dense_pos(oriData, r1, r2, r3, realPrecision, &dense_pos, &sz_sample_correct_freq, &mean_flush_freq); |
---|
| 4500 | if(mean_flush_freq > 0.5 || mean_flush_freq > sz_sample_correct_freq) use_mean = 1; |
---|
| 4501 | updateQuantizationInfo(quantization_intervals); |
---|
| 4502 | } |
---|
| 4503 | else{ |
---|
| 4504 | quantization_intervals = exe_params->intvCapacity; |
---|
| 4505 | } |
---|
| 4506 | |
---|
| 4507 | double mean = 0; |
---|
| 4508 | if(use_mean){ |
---|
| 4509 | // compute mean |
---|
| 4510 | double sum = 0.0; |
---|
| 4511 | size_t mean_count = 0; |
---|
| 4512 | for(size_t i=0; i<num_elements; i++){ |
---|
| 4513 | if(fabs(oriData[i] - dense_pos) < realPrecision){ |
---|
| 4514 | sum += oriData[i]; |
---|
| 4515 | mean_count ++; |
---|
| 4516 | } |
---|
| 4517 | } |
---|
| 4518 | if(mean_count > 0) mean = sum / mean_count; |
---|
| 4519 | } |
---|
| 4520 | |
---|
| 4521 | double tmp_realPrecision = realPrecision; |
---|
| 4522 | |
---|
| 4523 | // use two prediction buffers for higher performance |
---|
| 4524 | double * unpredictable_data = result_unpredictable_data; |
---|
| 4525 | unsigned char * indicator = (unsigned char *) malloc(num_blocks * sizeof(unsigned char)); |
---|
| 4526 | memset(indicator, 0, num_blocks * sizeof(unsigned char)); |
---|
| 4527 | size_t reg_count = 0; |
---|
| 4528 | size_t strip_dim_0 = early_blockcount_x + 1; |
---|
| 4529 | size_t strip_dim_1 = r2 + 1; |
---|
| 4530 | size_t strip_dim_2 = r3 + 1; |
---|
| 4531 | size_t strip_dim0_offset = strip_dim_1 * strip_dim_2; |
---|
| 4532 | size_t strip_dim1_offset = strip_dim_2; |
---|
| 4533 | unsigned char * indicator_pos = indicator; |
---|
| 4534 | |
---|
| 4535 | size_t prediction_buffer_size = strip_dim_0 * strip_dim0_offset * sizeof(double); |
---|
| 4536 | double * prediction_buffer_1 = (double *) malloc(prediction_buffer_size); |
---|
| 4537 | memset(prediction_buffer_1, 0, prediction_buffer_size); |
---|
| 4538 | double * prediction_buffer_2 = (double *) malloc(prediction_buffer_size); |
---|
| 4539 | memset(prediction_buffer_2, 0, prediction_buffer_size); |
---|
| 4540 | double * cur_pb_buf = prediction_buffer_1; |
---|
| 4541 | double * next_pb_buf = prediction_buffer_2; |
---|
| 4542 | double * cur_pb_buf_pos; |
---|
| 4543 | double * next_pb_buf_pos; |
---|
| 4544 | int intvCapacity = exe_params->intvCapacity; |
---|
| 4545 | int intvRadius = exe_params->intvRadius; |
---|
| 4546 | int use_reg = 0; |
---|
| 4547 | double noise = realPrecision * 1.22; |
---|
| 4548 | |
---|
| 4549 | reg_params_pos = reg_params; |
---|
| 4550 | // compress the regression coefficients on the fly |
---|
| 4551 | double last_coeffcients[4] = {0.0}; |
---|
| 4552 | int coeff_intvCapacity_sz = 65536; |
---|
| 4553 | int coeff_intvRadius = coeff_intvCapacity_sz / 2; |
---|
| 4554 | int * coeff_type[4]; |
---|
| 4555 | int * coeff_result_type = (int *) malloc(num_blocks*4*sizeof(int)); |
---|
| 4556 | double * coeff_unpred_data[4]; |
---|
| 4557 | double * coeff_unpredictable_data = (double *) malloc(num_blocks*4*sizeof(double)); |
---|
| 4558 | double precision[4]; |
---|
| 4559 | precision[0] = precision_a, precision[1] = precision_b, precision[2] = precision_c, precision[3] = precision_d; |
---|
| 4560 | for(int i=0; i<4; i++){ |
---|
| 4561 | coeff_type[i] = coeff_result_type + i * num_blocks; |
---|
| 4562 | coeff_unpred_data[i] = coeff_unpredictable_data + i * num_blocks; |
---|
| 4563 | } |
---|
| 4564 | int coeff_index = 0; |
---|
| 4565 | unsigned int coeff_unpredictable_count[4] = {0}; |
---|
| 4566 | |
---|
| 4567 | if(use_mean){ |
---|
| 4568 | int intvCapacity_sz = intvCapacity - 2; |
---|
| 4569 | for(size_t i=0; i<num_x; i++){ |
---|
| 4570 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 4571 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 4572 | for(size_t j=0; j<num_y; j++){ |
---|
| 4573 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 4574 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 4575 | data_pos = oriData + offset_x * dim0_offset + offset_y * dim1_offset; |
---|
| 4576 | type_offset = offset_x * dim0_offset + offset_y * current_blockcount_x * dim1_offset; |
---|
| 4577 | type = result_type + type_offset; |
---|
| 4578 | |
---|
| 4579 | // prediction buffer is (current_block_count_x + 1) * (current_block_count_y + 1) * (current_block_count_z + 1) |
---|
| 4580 | cur_pb_buf_pos = cur_pb_buf + offset_y * strip_dim1_offset + strip_dim0_offset + strip_dim1_offset + 1; |
---|
| 4581 | next_pb_buf_pos = next_pb_buf + offset_y * strip_dim1_offset + strip_dim1_offset + 1; |
---|
| 4582 | |
---|
| 4583 | size_t current_blockcount_z; |
---|
| 4584 | double * pb_pos = cur_pb_buf_pos; |
---|
| 4585 | double * next_pb_pos = next_pb_buf_pos; |
---|
| 4586 | size_t strip_unpredictable_count = 0; |
---|
| 4587 | for(size_t k=0; k<num_z; k++){ |
---|
| 4588 | current_blockcount_z = (k < split_index_z) ? early_blockcount_z : late_blockcount_z; |
---|
| 4589 | |
---|
| 4590 | /*sampling and decide which predictor*/ |
---|
| 4591 | { |
---|
| 4592 | // sample point [1, 1, 1] [1, 1, 4] [1, 4, 1] [1, 4, 4] [4, 1, 1] [4, 1, 4] [4, 4, 1] [4, 4, 4] |
---|
| 4593 | double * cur_data_pos; |
---|
| 4594 | double curData; |
---|
| 4595 | double pred_reg, pred_sz; |
---|
| 4596 | double err_sz = 0.0, err_reg = 0.0; |
---|
| 4597 | int bmi = 0; |
---|
| 4598 | if(i>0 && j>0 && k>0){ |
---|
| 4599 | for(int i=0; i<block_size; i++){ |
---|
| 4600 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
| 4601 | curData = *cur_data_pos; |
---|
| 4602 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4603 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 4604 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 4605 | err_reg += fabs(pred_reg - curData); |
---|
| 4606 | |
---|
| 4607 | bmi = block_size - i; |
---|
| 4608 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
| 4609 | curData = *cur_data_pos; |
---|
| 4610 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4611 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 4612 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 4613 | err_reg += fabs(pred_reg - curData); |
---|
| 4614 | |
---|
| 4615 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
| 4616 | curData = *cur_data_pos; |
---|
| 4617 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4618 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 4619 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 4620 | err_reg += fabs(pred_reg - curData); |
---|
| 4621 | |
---|
| 4622 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
| 4623 | curData = *cur_data_pos; |
---|
| 4624 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4625 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 4626 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 4627 | err_reg += fabs(pred_reg - curData); |
---|
| 4628 | } |
---|
| 4629 | } |
---|
| 4630 | else{ |
---|
| 4631 | for(int i=1; i<block_size; i++){ |
---|
| 4632 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
| 4633 | curData = *cur_data_pos; |
---|
| 4634 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4635 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 4636 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 4637 | err_reg += fabs(pred_reg - curData); |
---|
| 4638 | |
---|
| 4639 | bmi = block_size - i; |
---|
| 4640 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
| 4641 | curData = *cur_data_pos; |
---|
| 4642 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4643 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 4644 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 4645 | err_reg += fabs(pred_reg - curData); |
---|
| 4646 | |
---|
| 4647 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
| 4648 | curData = *cur_data_pos; |
---|
| 4649 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4650 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 4651 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 4652 | err_reg += fabs(pred_reg - curData); |
---|
| 4653 | |
---|
| 4654 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
| 4655 | curData = *cur_data_pos; |
---|
| 4656 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4657 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 4658 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 4659 | err_reg += fabs(pred_reg - curData); |
---|
| 4660 | |
---|
| 4661 | } |
---|
| 4662 | } |
---|
| 4663 | use_reg = (err_reg < err_sz); |
---|
| 4664 | } |
---|
| 4665 | if(use_reg){ |
---|
| 4666 | { |
---|
| 4667 | /*predict coefficients in current block via previous reg_block*/ |
---|
| 4668 | double cur_coeff; |
---|
| 4669 | double diff, itvNum; |
---|
| 4670 | for(int e=0; e<4; e++){ |
---|
| 4671 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
| 4672 | diff = cur_coeff - last_coeffcients[e]; |
---|
| 4673 | itvNum = fabs(diff)/precision[e] + 1; |
---|
| 4674 | if (itvNum < coeff_intvCapacity_sz){ |
---|
| 4675 | if (diff < 0) itvNum = -itvNum; |
---|
| 4676 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
| 4677 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
| 4678 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4679 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
| 4680 | coeff_type[e][coeff_index] = 0; |
---|
| 4681 | last_coeffcients[e] = cur_coeff; |
---|
| 4682 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 4683 | } |
---|
| 4684 | } |
---|
| 4685 | else{ |
---|
| 4686 | coeff_type[e][coeff_index] = 0; |
---|
| 4687 | last_coeffcients[e] = cur_coeff; |
---|
| 4688 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 4689 | } |
---|
| 4690 | } |
---|
| 4691 | coeff_index ++; |
---|
| 4692 | } |
---|
| 4693 | double curData; |
---|
| 4694 | double pred; |
---|
| 4695 | double itvNum; |
---|
| 4696 | double diff; |
---|
| 4697 | size_t index = 0; |
---|
| 4698 | size_t block_unpredictable_count = 0; |
---|
| 4699 | double * cur_data_pos = data_pos; |
---|
| 4700 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 4701 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 4702 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 4703 | curData = *cur_data_pos; |
---|
| 4704 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
| 4705 | diff = curData - pred; |
---|
| 4706 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
| 4707 | if (itvNum < intvCapacity){ |
---|
| 4708 | if (diff < 0) itvNum = -itvNum; |
---|
| 4709 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4710 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 4711 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4712 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
| 4713 | type[index] = 0; |
---|
| 4714 | pred = curData; |
---|
| 4715 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4716 | } |
---|
| 4717 | } |
---|
| 4718 | else{ |
---|
| 4719 | type[index] = 0; |
---|
| 4720 | pred = curData; |
---|
| 4721 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4722 | } |
---|
| 4723 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
| 4724 | // assign value to block surfaces |
---|
| 4725 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
| 4726 | } |
---|
| 4727 | index ++; |
---|
| 4728 | cur_data_pos ++; |
---|
| 4729 | } |
---|
| 4730 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 4731 | } |
---|
| 4732 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
| 4733 | } |
---|
| 4734 | /*dealing with the last ii (boundary)*/ |
---|
| 4735 | { |
---|
| 4736 | // ii == current_blockcount_x - 1 |
---|
| 4737 | size_t ii = current_blockcount_x - 1; |
---|
| 4738 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 4739 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 4740 | curData = *cur_data_pos; |
---|
| 4741 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
| 4742 | diff = curData - pred; |
---|
| 4743 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
| 4744 | if (itvNum < intvCapacity){ |
---|
| 4745 | if (diff < 0) itvNum = -itvNum; |
---|
| 4746 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4747 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 4748 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4749 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
| 4750 | type[index] = 0; |
---|
| 4751 | pred = curData; |
---|
| 4752 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4753 | } |
---|
| 4754 | } |
---|
| 4755 | else{ |
---|
| 4756 | type[index] = 0; |
---|
| 4757 | pred = curData; |
---|
| 4758 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4759 | } |
---|
| 4760 | |
---|
| 4761 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
| 4762 | // assign value to block surfaces |
---|
| 4763 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
| 4764 | } |
---|
| 4765 | // assign value to next prediction buffer |
---|
| 4766 | next_pb_pos[jj * strip_dim1_offset + kk] = pred; |
---|
| 4767 | index ++; |
---|
| 4768 | cur_data_pos ++; |
---|
| 4769 | } |
---|
| 4770 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 4771 | } |
---|
| 4772 | } |
---|
| 4773 | unpredictable_count = block_unpredictable_count; |
---|
| 4774 | strip_unpredictable_count += unpredictable_count; |
---|
| 4775 | unpredictable_data += unpredictable_count; |
---|
| 4776 | |
---|
| 4777 | reg_count ++; |
---|
| 4778 | } |
---|
| 4779 | else{ |
---|
| 4780 | // use SZ |
---|
| 4781 | // SZ predication |
---|
| 4782 | unpredictable_count = 0; |
---|
| 4783 | double * cur_pb_pos = pb_pos; |
---|
| 4784 | double * cur_data_pos = data_pos; |
---|
| 4785 | double curData; |
---|
| 4786 | double pred3D; |
---|
| 4787 | double itvNum, diff; |
---|
| 4788 | size_t index = 0; |
---|
| 4789 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 4790 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 4791 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 4792 | |
---|
| 4793 | curData = *cur_data_pos; |
---|
| 4794 | if(fabs(curData - mean) <= realPrecision){ |
---|
| 4795 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
| 4796 | type[index] = intvRadius; |
---|
| 4797 | *cur_pb_pos = mean; |
---|
| 4798 | } |
---|
| 4799 | else |
---|
| 4800 | { |
---|
| 4801 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
| 4802 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 4803 | diff = curData - pred3D; |
---|
| 4804 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4805 | if (itvNum < intvCapacity_sz){ |
---|
| 4806 | if (diff < 0) itvNum = -itvNum; |
---|
| 4807 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4808 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 4809 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
| 4810 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4811 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 4812 | type[index] = 0; |
---|
| 4813 | *cur_pb_pos = curData; |
---|
| 4814 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4815 | } |
---|
| 4816 | } |
---|
| 4817 | else{ |
---|
| 4818 | type[index] = 0; |
---|
| 4819 | *cur_pb_pos = curData; |
---|
| 4820 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4821 | } |
---|
| 4822 | } |
---|
| 4823 | index ++; |
---|
| 4824 | cur_pb_pos ++; |
---|
| 4825 | cur_data_pos ++; |
---|
| 4826 | } |
---|
| 4827 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
| 4828 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 4829 | } |
---|
| 4830 | cur_pb_pos += strip_dim0_offset - current_blockcount_y * strip_dim1_offset; |
---|
| 4831 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
| 4832 | } |
---|
| 4833 | /*dealing with the last ii (boundary)*/ |
---|
| 4834 | { |
---|
| 4835 | // ii == current_blockcount_x - 1 |
---|
| 4836 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 4837 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 4838 | |
---|
| 4839 | curData = *cur_data_pos; |
---|
| 4840 | if(fabs(curData - mean) <= realPrecision){ |
---|
| 4841 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
| 4842 | type[index] = intvRadius; |
---|
| 4843 | *cur_pb_pos = mean; |
---|
| 4844 | } |
---|
| 4845 | else |
---|
| 4846 | { |
---|
| 4847 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
| 4848 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 4849 | diff = curData - pred3D; |
---|
| 4850 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4851 | if (itvNum < intvCapacity_sz){ |
---|
| 4852 | if (diff < 0) itvNum = -itvNum; |
---|
| 4853 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4854 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 4855 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
| 4856 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4857 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 4858 | type[index] = 0; |
---|
| 4859 | *cur_pb_pos = curData; |
---|
| 4860 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4861 | } |
---|
| 4862 | } |
---|
| 4863 | else{ |
---|
| 4864 | type[index] = 0; |
---|
| 4865 | *cur_pb_pos = curData; |
---|
| 4866 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4867 | } |
---|
| 4868 | } |
---|
| 4869 | next_pb_pos[jj * strip_dim1_offset + kk] = *cur_pb_pos; |
---|
| 4870 | index ++; |
---|
| 4871 | cur_pb_pos ++; |
---|
| 4872 | cur_data_pos ++; |
---|
| 4873 | } |
---|
| 4874 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
| 4875 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 4876 | } |
---|
| 4877 | } |
---|
| 4878 | strip_unpredictable_count += unpredictable_count; |
---|
| 4879 | unpredictable_data += unpredictable_count; |
---|
| 4880 | // change indicator |
---|
| 4881 | indicator_pos[k] = 1; |
---|
| 4882 | }// end SZ |
---|
| 4883 | |
---|
| 4884 | reg_params_pos ++; |
---|
| 4885 | data_pos += current_blockcount_z; |
---|
| 4886 | pb_pos += current_blockcount_z; |
---|
| 4887 | next_pb_pos += current_blockcount_z; |
---|
| 4888 | type += current_blockcount_x * current_blockcount_y * current_blockcount_z; |
---|
| 4889 | |
---|
| 4890 | } // end k |
---|
| 4891 | |
---|
| 4892 | if(strip_unpredictable_count > max_unpred_count){ |
---|
| 4893 | max_unpred_count = strip_unpredictable_count; |
---|
| 4894 | } |
---|
| 4895 | total_unpred += strip_unpredictable_count; |
---|
| 4896 | indicator_pos += num_z; |
---|
| 4897 | }// end j |
---|
| 4898 | double * tmp; |
---|
| 4899 | tmp = cur_pb_buf; |
---|
| 4900 | cur_pb_buf = next_pb_buf; |
---|
| 4901 | next_pb_buf = tmp; |
---|
| 4902 | }// end i |
---|
| 4903 | } |
---|
| 4904 | else{ |
---|
| 4905 | int intvCapacity_sz = intvCapacity - 2; |
---|
| 4906 | for(size_t i=0; i<num_x; i++){ |
---|
| 4907 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 4908 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 4909 | |
---|
| 4910 | for(size_t j=0; j<num_y; j++){ |
---|
| 4911 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 4912 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 4913 | data_pos = oriData + offset_x * dim0_offset + offset_y * dim1_offset; |
---|
| 4914 | // copy bottom plane from plane buffer |
---|
| 4915 | // memcpy(prediction_buffer, bottom_buffer + offset_y * strip_dim1_offset, (current_blockcount_y + 1) * strip_dim1_offset * sizeof(double)); |
---|
| 4916 | type_offset = offset_x * dim0_offset + offset_y * current_blockcount_x * dim1_offset; |
---|
| 4917 | type = result_type + type_offset; |
---|
| 4918 | |
---|
| 4919 | // prediction buffer is (current_block_count_x + 1) * (current_block_count_y + 1) * (current_block_count_z + 1) |
---|
| 4920 | cur_pb_buf_pos = cur_pb_buf + offset_y * strip_dim1_offset + strip_dim0_offset + strip_dim1_offset + 1; |
---|
| 4921 | next_pb_buf_pos = next_pb_buf + offset_y * strip_dim1_offset + strip_dim1_offset + 1; |
---|
| 4922 | |
---|
| 4923 | size_t current_blockcount_z; |
---|
| 4924 | double * pb_pos = cur_pb_buf_pos; |
---|
| 4925 | double * next_pb_pos = next_pb_buf_pos; |
---|
| 4926 | size_t strip_unpredictable_count = 0; |
---|
| 4927 | for(size_t k=0; k<num_z; k++){ |
---|
| 4928 | current_blockcount_z = (k < split_index_z) ? early_blockcount_z : late_blockcount_z; |
---|
| 4929 | /*sampling*/ |
---|
| 4930 | { |
---|
| 4931 | // sample point [1, 1, 1] [1, 1, 4] [1, 4, 1] [1, 4, 4] [4, 1, 1] [4, 1, 4] [4, 4, 1] [4, 4, 4] |
---|
| 4932 | double * cur_data_pos; |
---|
| 4933 | double curData; |
---|
| 4934 | double pred_reg, pred_sz; |
---|
| 4935 | double err_sz = 0.0, err_reg = 0.0; |
---|
| 4936 | int bmi; |
---|
| 4937 | if(i>0 && j>0 && k>0){ |
---|
| 4938 | for(int i=0; i<block_size; i++){ |
---|
| 4939 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
| 4940 | curData = *cur_data_pos; |
---|
| 4941 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4942 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 4943 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 4944 | err_reg += fabs(pred_reg - curData); |
---|
| 4945 | |
---|
| 4946 | bmi = block_size - i; |
---|
| 4947 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
| 4948 | curData = *cur_data_pos; |
---|
| 4949 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4950 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 4951 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 4952 | err_reg += fabs(pred_reg - curData); |
---|
| 4953 | |
---|
| 4954 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
| 4955 | curData = *cur_data_pos; |
---|
| 4956 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4957 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 4958 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 4959 | err_reg += fabs(pred_reg - curData); |
---|
| 4960 | |
---|
| 4961 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
| 4962 | curData = *cur_data_pos; |
---|
| 4963 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4964 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 4965 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 4966 | err_reg += fabs(pred_reg - curData); |
---|
| 4967 | } |
---|
| 4968 | } |
---|
| 4969 | else{ |
---|
| 4970 | for(int i=1; i<block_size; i++){ |
---|
| 4971 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
| 4972 | curData = *cur_data_pos; |
---|
| 4973 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4974 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 4975 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 4976 | err_reg += fabs(pred_reg - curData); |
---|
| 4977 | |
---|
| 4978 | bmi = block_size - i; |
---|
| 4979 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
| 4980 | curData = *cur_data_pos; |
---|
| 4981 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4982 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 4983 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 4984 | err_reg += fabs(pred_reg - curData); |
---|
| 4985 | |
---|
| 4986 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
| 4987 | curData = *cur_data_pos; |
---|
| 4988 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4989 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 4990 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 4991 | err_reg += fabs(pred_reg - curData); |
---|
| 4992 | |
---|
| 4993 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
| 4994 | curData = *cur_data_pos; |
---|
| 4995 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 4996 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 4997 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 4998 | err_reg += fabs(pred_reg - curData); |
---|
| 4999 | } |
---|
| 5000 | } |
---|
| 5001 | use_reg = (err_reg < err_sz); |
---|
| 5002 | |
---|
| 5003 | } |
---|
| 5004 | if(use_reg) |
---|
| 5005 | { |
---|
| 5006 | { |
---|
| 5007 | /*predict coefficients in current block via previous reg_block*/ |
---|
| 5008 | double cur_coeff; |
---|
| 5009 | double diff, itvNum; |
---|
| 5010 | for(int e=0; e<4; e++){ |
---|
| 5011 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
| 5012 | diff = cur_coeff - last_coeffcients[e]; |
---|
| 5013 | itvNum = fabs(diff)/precision[e] + 1; |
---|
| 5014 | if (itvNum < coeff_intvCapacity_sz){ |
---|
| 5015 | if (diff < 0) itvNum = -itvNum; |
---|
| 5016 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
| 5017 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
| 5018 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5019 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
| 5020 | coeff_type[e][coeff_index] = 0; |
---|
| 5021 | last_coeffcients[e] = cur_coeff; |
---|
| 5022 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 5023 | } |
---|
| 5024 | } |
---|
| 5025 | else{ |
---|
| 5026 | coeff_type[e][coeff_index] = 0; |
---|
| 5027 | last_coeffcients[e] = cur_coeff; |
---|
| 5028 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 5029 | } |
---|
| 5030 | } |
---|
| 5031 | coeff_index ++; |
---|
| 5032 | } |
---|
| 5033 | double curData; |
---|
| 5034 | double pred; |
---|
| 5035 | double itvNum; |
---|
| 5036 | double diff; |
---|
| 5037 | size_t index = 0; |
---|
| 5038 | size_t block_unpredictable_count = 0; |
---|
| 5039 | double * cur_data_pos = data_pos; |
---|
| 5040 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 5041 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5042 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5043 | |
---|
| 5044 | curData = *cur_data_pos; |
---|
| 5045 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
| 5046 | diff = curData - pred; |
---|
| 5047 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
| 5048 | if (itvNum < intvCapacity){ |
---|
| 5049 | if (diff < 0) itvNum = -itvNum; |
---|
| 5050 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5051 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5052 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5053 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
| 5054 | type[index] = 0; |
---|
| 5055 | pred = curData; |
---|
| 5056 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5057 | } |
---|
| 5058 | } |
---|
| 5059 | else{ |
---|
| 5060 | type[index] = 0; |
---|
| 5061 | pred = curData; |
---|
| 5062 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5063 | } |
---|
| 5064 | |
---|
| 5065 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
| 5066 | // assign value to block surfaces |
---|
| 5067 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
| 5068 | } |
---|
| 5069 | index ++; |
---|
| 5070 | cur_data_pos ++; |
---|
| 5071 | } |
---|
| 5072 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5073 | } |
---|
| 5074 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
| 5075 | } |
---|
| 5076 | /*dealing with the last ii (boundary)*/ |
---|
| 5077 | { |
---|
| 5078 | // ii == current_blockcount_x - 1 |
---|
| 5079 | size_t ii = current_blockcount_x - 1; |
---|
| 5080 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5081 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5082 | curData = *cur_data_pos; |
---|
| 5083 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
| 5084 | diff = curData - pred; |
---|
| 5085 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
| 5086 | if (itvNum < intvCapacity){ |
---|
| 5087 | if (diff < 0) itvNum = -itvNum; |
---|
| 5088 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5089 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5090 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5091 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
| 5092 | type[index] = 0; |
---|
| 5093 | pred = curData; |
---|
| 5094 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5095 | } |
---|
| 5096 | } |
---|
| 5097 | else{ |
---|
| 5098 | type[index] = 0; |
---|
| 5099 | pred = curData; |
---|
| 5100 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5101 | } |
---|
| 5102 | |
---|
| 5103 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
| 5104 | // assign value to block surfaces |
---|
| 5105 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
| 5106 | } |
---|
| 5107 | // assign value to next prediction buffer |
---|
| 5108 | next_pb_pos[jj * strip_dim1_offset + kk] = pred; |
---|
| 5109 | index ++; |
---|
| 5110 | cur_data_pos ++; |
---|
| 5111 | } |
---|
| 5112 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5113 | } |
---|
| 5114 | } |
---|
| 5115 | unpredictable_count = block_unpredictable_count; |
---|
| 5116 | strip_unpredictable_count += unpredictable_count; |
---|
| 5117 | unpredictable_data += unpredictable_count; |
---|
| 5118 | reg_count ++; |
---|
| 5119 | } |
---|
| 5120 | else{ |
---|
| 5121 | // use SZ |
---|
| 5122 | // SZ predication |
---|
| 5123 | unpredictable_count = 0; |
---|
| 5124 | double * cur_pb_pos = pb_pos; |
---|
| 5125 | double * cur_data_pos = data_pos; |
---|
| 5126 | double curData; |
---|
| 5127 | double pred3D; |
---|
| 5128 | double itvNum, diff; |
---|
| 5129 | size_t index = 0; |
---|
| 5130 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 5131 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5132 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5133 | |
---|
| 5134 | curData = *cur_data_pos; |
---|
| 5135 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
| 5136 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 5137 | diff = curData - pred3D; |
---|
| 5138 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 5139 | if (itvNum < intvCapacity_sz){ |
---|
| 5140 | if (diff < 0) itvNum = -itvNum; |
---|
| 5141 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5142 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5143 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5144 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 5145 | type[index] = 0; |
---|
| 5146 | *cur_pb_pos = curData; |
---|
| 5147 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 5148 | } |
---|
| 5149 | } |
---|
| 5150 | else{ |
---|
| 5151 | type[index] = 0; |
---|
| 5152 | *cur_pb_pos = curData; |
---|
| 5153 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 5154 | } |
---|
| 5155 | index ++; |
---|
| 5156 | cur_pb_pos ++; |
---|
| 5157 | cur_data_pos ++; |
---|
| 5158 | } |
---|
| 5159 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
| 5160 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5161 | } |
---|
| 5162 | cur_pb_pos += strip_dim0_offset - current_blockcount_y * strip_dim1_offset; |
---|
| 5163 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
| 5164 | } |
---|
| 5165 | /*dealing with the last ii (boundary)*/ |
---|
| 5166 | { |
---|
| 5167 | // ii == current_blockcount_x - 1 |
---|
| 5168 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5169 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5170 | |
---|
| 5171 | curData = *cur_data_pos; |
---|
| 5172 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
| 5173 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 5174 | diff = curData - pred3D; |
---|
| 5175 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 5176 | if (itvNum < intvCapacity_sz){ |
---|
| 5177 | if (diff < 0) itvNum = -itvNum; |
---|
| 5178 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5179 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5180 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5181 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 5182 | type[index] = 0; |
---|
| 5183 | *cur_pb_pos = curData; |
---|
| 5184 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 5185 | } |
---|
| 5186 | } |
---|
| 5187 | else{ |
---|
| 5188 | type[index] = 0; |
---|
| 5189 | *cur_pb_pos = curData; |
---|
| 5190 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 5191 | } |
---|
| 5192 | // assign value to next prediction buffer |
---|
| 5193 | next_pb_pos[jj * strip_dim1_offset + kk] = *cur_pb_pos; |
---|
| 5194 | index ++; |
---|
| 5195 | cur_pb_pos ++; |
---|
| 5196 | cur_data_pos ++; |
---|
| 5197 | } |
---|
| 5198 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
| 5199 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5200 | } |
---|
| 5201 | } |
---|
| 5202 | strip_unpredictable_count += unpredictable_count; |
---|
| 5203 | unpredictable_data += unpredictable_count; |
---|
| 5204 | // change indicator |
---|
| 5205 | indicator_pos[k] = 1; |
---|
| 5206 | }// end SZ |
---|
| 5207 | |
---|
| 5208 | reg_params_pos ++; |
---|
| 5209 | data_pos += current_blockcount_z; |
---|
| 5210 | pb_pos += current_blockcount_z; |
---|
| 5211 | next_pb_pos += current_blockcount_z; |
---|
| 5212 | type += current_blockcount_x * current_blockcount_y * current_blockcount_z; |
---|
| 5213 | |
---|
| 5214 | } |
---|
| 5215 | |
---|
| 5216 | if(strip_unpredictable_count > max_unpred_count){ |
---|
| 5217 | max_unpred_count = strip_unpredictable_count; |
---|
| 5218 | } |
---|
| 5219 | total_unpred += strip_unpredictable_count; |
---|
| 5220 | indicator_pos += num_z; |
---|
| 5221 | } |
---|
| 5222 | double * tmp; |
---|
| 5223 | tmp = cur_pb_buf; |
---|
| 5224 | cur_pb_buf = next_pb_buf; |
---|
| 5225 | next_pb_buf = tmp; |
---|
| 5226 | } |
---|
| 5227 | } |
---|
| 5228 | |
---|
| 5229 | free(prediction_buffer_1); |
---|
| 5230 | free(prediction_buffer_2); |
---|
| 5231 | |
---|
| 5232 | int stateNum = 2*quantization_intervals; |
---|
| 5233 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
| 5234 | |
---|
| 5235 | size_t nodeCount = 0; |
---|
| 5236 | init(huffmanTree, result_type, num_elements); |
---|
| 5237 | size_t i = 0; |
---|
| 5238 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
| 5239 | if (huffmanTree->code[i]) nodeCount++; |
---|
| 5240 | nodeCount = nodeCount*2-1; |
---|
| 5241 | |
---|
| 5242 | unsigned char *treeBytes; |
---|
| 5243 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
| 5244 | |
---|
| 5245 | unsigned int meta_data_offset = 3 + 1 + MetaDataByteLength; |
---|
| 5246 | // total size metadata # elements real precision intervals nodeCount huffman block index unpredicatable count mean unpred size elements |
---|
| 5247 | unsigned char * result = (unsigned char *) calloc(meta_data_offset + exe_params->SZ_SIZE_TYPE + sizeof(double) + sizeof(int) + sizeof(int) + treeByteSize + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(double) + total_unpred * sizeof(double) + num_elements * sizeof(int), 1); |
---|
| 5248 | unsigned char * result_pos = result; |
---|
| 5249 | initRandomAccessBytes(result_pos); |
---|
| 5250 | |
---|
| 5251 | result_pos += meta_data_offset; |
---|
| 5252 | |
---|
| 5253 | sizeToBytes(result_pos,num_elements); //SZ_SIZE_TYPE: 4 or 8 |
---|
| 5254 | result_pos += exe_params->SZ_SIZE_TYPE; |
---|
| 5255 | |
---|
| 5256 | intToBytes_bigEndian(result_pos, block_size); |
---|
| 5257 | result_pos += sizeof(int); |
---|
| 5258 | doubleToBytes(result_pos, realPrecision); |
---|
| 5259 | result_pos += sizeof(double); |
---|
| 5260 | intToBytes_bigEndian(result_pos, quantization_intervals); |
---|
| 5261 | result_pos += sizeof(int); |
---|
| 5262 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
| 5263 | result_pos += sizeof(int); |
---|
| 5264 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
| 5265 | result_pos += sizeof(int); |
---|
| 5266 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
| 5267 | result_pos += treeByteSize; |
---|
| 5268 | free(treeBytes); |
---|
| 5269 | |
---|
| 5270 | memcpy(result_pos, &use_mean, sizeof(unsigned char)); |
---|
| 5271 | result_pos += sizeof(unsigned char); |
---|
| 5272 | memcpy(result_pos, &mean, sizeof(double)); |
---|
| 5273 | result_pos += sizeof(double); |
---|
| 5274 | size_t indicator_size = convertIntArray2ByteArray_fast_1b_to_result(indicator, num_blocks, result_pos); |
---|
| 5275 | result_pos += indicator_size; |
---|
| 5276 | |
---|
| 5277 | //convert the lead/mid/resi to byte stream |
---|
| 5278 | if(reg_count > 0){ |
---|
| 5279 | for(int e=0; e<4; e++){ |
---|
| 5280 | int stateNum = 2*coeff_intvCapacity_sz; |
---|
| 5281 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
| 5282 | size_t nodeCount = 0; |
---|
| 5283 | init(huffmanTree, coeff_type[e], reg_count); |
---|
| 5284 | size_t i = 0; |
---|
| 5285 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
| 5286 | if (huffmanTree->code[i]) nodeCount++; |
---|
| 5287 | nodeCount = nodeCount*2-1; |
---|
| 5288 | unsigned char *treeBytes; |
---|
| 5289 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
| 5290 | doubleToBytes(result_pos, precision[e]); |
---|
| 5291 | result_pos += sizeof(double); |
---|
| 5292 | intToBytes_bigEndian(result_pos, coeff_intvRadius); |
---|
| 5293 | result_pos += sizeof(int); |
---|
| 5294 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
| 5295 | result_pos += sizeof(int); |
---|
| 5296 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
| 5297 | result_pos += sizeof(int); |
---|
| 5298 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
| 5299 | result_pos += treeByteSize; |
---|
| 5300 | free(treeBytes); |
---|
| 5301 | size_t typeArray_size = 0; |
---|
| 5302 | encode(huffmanTree, coeff_type[e], reg_count, result_pos + sizeof(size_t), &typeArray_size); |
---|
| 5303 | sizeToBytes(result_pos, typeArray_size); |
---|
| 5304 | result_pos += sizeof(size_t) + typeArray_size; |
---|
| 5305 | intToBytes_bigEndian(result_pos, coeff_unpredictable_count[e]); |
---|
| 5306 | result_pos += sizeof(int); |
---|
| 5307 | memcpy(result_pos, coeff_unpred_data[e], coeff_unpredictable_count[e]*sizeof(double)); |
---|
| 5308 | result_pos += coeff_unpredictable_count[e]*sizeof(double); |
---|
| 5309 | SZ_ReleaseHuffman(huffmanTree); |
---|
| 5310 | } |
---|
| 5311 | } |
---|
| 5312 | free(coeff_result_type); |
---|
| 5313 | free(coeff_unpredictable_data); |
---|
| 5314 | |
---|
| 5315 | //record the number of unpredictable data and also store them |
---|
| 5316 | memcpy(result_pos, &total_unpred, sizeof(size_t)); |
---|
| 5317 | result_pos += sizeof(size_t); |
---|
| 5318 | memcpy(result_pos, result_unpredictable_data, total_unpred * sizeof(double)); |
---|
| 5319 | result_pos += total_unpred * sizeof(double); |
---|
| 5320 | size_t typeArray_size = 0; |
---|
| 5321 | encode(huffmanTree, result_type, num_elements, result_pos, &typeArray_size); |
---|
| 5322 | result_pos += typeArray_size; |
---|
| 5323 | size_t totalEncodeSize = result_pos - result; |
---|
| 5324 | free(indicator); |
---|
| 5325 | free(result_unpredictable_data); |
---|
| 5326 | free(result_type); |
---|
| 5327 | free(reg_params); |
---|
| 5328 | |
---|
| 5329 | |
---|
| 5330 | SZ_ReleaseHuffman(huffmanTree); |
---|
| 5331 | *comp_size = totalEncodeSize; |
---|
| 5332 | return result; |
---|
| 5333 | } |
---|