source: thirdparty/blosc/internal-complibs/zstd-0.7.4/common/xxhash.c @ 8ebc79b

Revision 8ebc79b, 27.2 KB checked in by Hal Finkel <hfinkel@…>, 8 years ago (diff)

Add the other internal compression libraries from blocs

  • Property mode set to 100644
Line 
1/*
2*  xxHash - Fast Hash algorithm
3*  Copyright (C) 2012-2016, Yann Collet
4*
5*  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6*
7*  Redistribution and use in source and binary forms, with or without
8*  modification, are permitted provided that the following conditions are
9*  met:
10*
11*  * Redistributions of source code must retain the above copyright
12*  notice, this list of conditions and the following disclaimer.
13*  * Redistributions in binary form must reproduce the above
14*  copyright notice, this list of conditions and the following disclaimer
15*  in the documentation and/or other materials provided with the
16*  distribution.
17*
18*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21*  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22*  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24*  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25*  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26*  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27*  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28*  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29*
30*  You can contact the author at :
31*  - xxHash homepage: http://www.xxhash.com
32*  - xxHash source repository : https://github.com/Cyan4973/xxHash
33*/
34
35
36/* *************************************
37*  Tuning parameters
38***************************************/
39/*!XXH_FORCE_MEMORY_ACCESS :
40 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
41 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
42 * The below switch allow to select different access method for improved performance.
43 * Method 0 (default) : use `memcpy()`. Safe and portable.
44 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
45 *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
46 * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
47 *            It can generate buggy code on targets which do not support unaligned memory accesses.
48 *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
49 * See http://stackoverflow.com/a/32095106/646947 for details.
50 * Prefer these methods in priority order (0 > 1 > 2)
51 */
52#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
53#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
54#    define XXH_FORCE_MEMORY_ACCESS 2
55#  elif defined(__INTEL_COMPILER) || \
56  (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
57#    define XXH_FORCE_MEMORY_ACCESS 1
58#  endif
59#endif
60
61/*!XXH_ACCEPT_NULL_INPUT_POINTER :
62 * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
63 * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
64 * By default, this option is disabled. To enable it, uncomment below define :
65 */
66/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
67
68/*!XXH_FORCE_NATIVE_FORMAT :
69 * By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
70 * Results are therefore identical for little-endian and big-endian CPU.
71 * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
72 * Should endian-independance be of no importance for your application, you may set the #define below to 1,
73 * to improve speed for Big-endian CPU.
74 * This option has no impact on Little_Endian CPU.
75 */
76#ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
77#  define XXH_FORCE_NATIVE_FORMAT 0
78#endif
79
80/*!XXH_FORCE_ALIGN_CHECK :
81 * This is a minor performance trick, only useful with lots of very small keys.
82 * It means : check for aligned/unaligned input.
83 * The check costs one initial branch per hash; set to 0 when the input data
84 * is guaranteed to be aligned.
85 */
86#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
87#  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
88#    define XXH_FORCE_ALIGN_CHECK 0
89#  else
90#    define XXH_FORCE_ALIGN_CHECK 1
91#  endif
92#endif
93
94
95/* *************************************
96*  Includes & Memory related functions
97***************************************/
98/* Modify the local functions below should you wish to use some other memory routines */
99/* for malloc(), free() */
100#include <stdlib.h>
101static void* XXH_malloc(size_t s) { return malloc(s); }
102static void  XXH_free  (void* p)  { free(p); }
103/* for memcpy() */
104#include <string.h>
105static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
106
107#define XXH_STATIC_LINKING_ONLY
108#include "xxhash.h"
109
110
111/* *************************************
112*  Compiler Specific Options
113***************************************/
114#ifdef _MSC_VER    /* Visual Studio */
115#  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
116#  define FORCE_INLINE static __forceinline
117#else
118#  if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
119#    ifdef __GNUC__
120#      define FORCE_INLINE static inline __attribute__((always_inline))
121#    else
122#      define FORCE_INLINE static inline
123#    endif
124#  else
125#    define FORCE_INLINE static
126#  endif /* __STDC_VERSION__ */
127#endif
128
129
130/* *************************************
131*  Basic Types
132***************************************/
133#ifndef MEM_MODULE
134# define MEM_MODULE
135# if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
136#   include <stdint.h>
137    typedef uint8_t  BYTE;
138    typedef uint16_t U16;
139    typedef uint32_t U32;
140    typedef  int32_t S32;
141    typedef uint64_t U64;
142#  else
143    typedef unsigned char      BYTE;
144    typedef unsigned short     U16;
145    typedef unsigned int       U32;
146    typedef   signed int       S32;
147    typedef unsigned long long U64;
148#  endif
149#endif
150
151
152#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
153
154/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
155static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
156static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
157
158#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
159
160/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
161/* currently only defined for gcc and icc */
162typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
163
164static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
165static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
166
167#else
168
169/* portable and safe solution. Generally efficient.
170 * see : http://stackoverflow.com/a/32095106/646947
171 */
172
173static U32 XXH_read32(const void* memPtr)
174{
175    U32 val;
176    memcpy(&val, memPtr, sizeof(val));
177    return val;
178}
179
180static U64 XXH_read64(const void* memPtr)
181{
182    U64 val;
183    memcpy(&val, memPtr, sizeof(val));
184    return val;
185}
186
187#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
188
189
190/* ****************************************
191*  Compiler-specific Functions and Macros
192******************************************/
193#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
194
195/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
196#if defined(_MSC_VER)
197#  define XXH_rotl32(x,r) _rotl(x,r)
198#  define XXH_rotl64(x,r) _rotl64(x,r)
199#else
200#  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
201#  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
202#endif
203
204#if defined(_MSC_VER)     /* Visual Studio */
205#  define XXH_swap32 _byteswap_ulong
206#  define XXH_swap64 _byteswap_uint64
207#elif GCC_VERSION >= 403
208#  define XXH_swap32 __builtin_bswap32
209#  define XXH_swap64 __builtin_bswap64
210#else
211static U32 XXH_swap32 (U32 x)
212{
213    return  ((x << 24) & 0xff000000 ) |
214            ((x <<  8) & 0x00ff0000 ) |
215            ((x >>  8) & 0x0000ff00 ) |
216            ((x >> 24) & 0x000000ff );
217}
218static U64 XXH_swap64 (U64 x)
219{
220    return  ((x << 56) & 0xff00000000000000ULL) |
221            ((x << 40) & 0x00ff000000000000ULL) |
222            ((x << 24) & 0x0000ff0000000000ULL) |
223            ((x << 8)  & 0x000000ff00000000ULL) |
224            ((x >> 8)  & 0x00000000ff000000ULL) |
225            ((x >> 24) & 0x0000000000ff0000ULL) |
226            ((x >> 40) & 0x000000000000ff00ULL) |
227            ((x >> 56) & 0x00000000000000ffULL);
228}
229#endif
230
231
232/* *************************************
233*  Architecture Macros
234***************************************/
235typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
236
237/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
238#ifndef XXH_CPU_LITTLE_ENDIAN
239    static const int g_one = 1;
240#   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
241#endif
242
243
244/* ***************************
245*  Memory reads
246*****************************/
247typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
248
249FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
250{
251    if (align==XXH_unaligned)
252        return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
253    else
254        return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
255}
256
257FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
258{
259    return XXH_readLE32_align(ptr, endian, XXH_unaligned);
260}
261
262static U32 XXH_readBE32(const void* ptr)
263{
264    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
265}
266
267FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
268{
269    if (align==XXH_unaligned)
270        return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
271    else
272        return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
273}
274
275FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
276{
277    return XXH_readLE64_align(ptr, endian, XXH_unaligned);
278}
279
280static U64 XXH_readBE64(const void* ptr)
281{
282    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
283}
284
285
286/* *************************************
287*  Macros
288***************************************/
289#define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
290
291
292/* *************************************
293*  Constants
294***************************************/
295static const U32 PRIME32_1 = 2654435761U;
296static const U32 PRIME32_2 = 2246822519U;
297static const U32 PRIME32_3 = 3266489917U;
298static const U32 PRIME32_4 =  668265263U;
299static const U32 PRIME32_5 =  374761393U;
300
301static const U64 PRIME64_1 = 11400714785074694791ULL;
302static const U64 PRIME64_2 = 14029467366897019727ULL;
303static const U64 PRIME64_3 =  1609587929392839161ULL;
304static const U64 PRIME64_4 =  9650029242287828579ULL;
305static const U64 PRIME64_5 =  2870177450012600261ULL;
306
307XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
308
309
310/* ***************************
311*  Simple Hash Functions
312*****************************/
313
314static U32 XXH32_round(U32 seed, U32 input)
315{
316    seed += input * PRIME32_2;
317    seed  = XXH_rotl32(seed, 13);
318    seed *= PRIME32_1;
319    return seed;
320}
321
322FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
323{
324    const BYTE* p = (const BYTE*)input;
325    const BYTE* bEnd = p + len;
326    U32 h32;
327#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
328
329#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
330    if (p==NULL) {
331        len=0;
332        bEnd=p=(const BYTE*)(size_t)16;
333    }
334#endif
335
336    if (len>=16) {
337        const BYTE* const limit = bEnd - 16;
338        U32 v1 = seed + PRIME32_1 + PRIME32_2;
339        U32 v2 = seed + PRIME32_2;
340        U32 v3 = seed + 0;
341        U32 v4 = seed - PRIME32_1;
342
343        do {
344            v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
345            v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
346            v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
347            v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
348        } while (p<=limit);
349
350        h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
351    } else {
352        h32  = seed + PRIME32_5;
353    }
354
355    h32 += (U32) len;
356
357    while (p+4<=bEnd) {
358        h32 += XXH_get32bits(p) * PRIME32_3;
359        h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
360        p+=4;
361    }
362
363    while (p<bEnd) {
364        h32 += (*p) * PRIME32_5;
365        h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
366        p++;
367    }
368
369    h32 ^= h32 >> 15;
370    h32 *= PRIME32_2;
371    h32 ^= h32 >> 13;
372    h32 *= PRIME32_3;
373    h32 ^= h32 >> 16;
374
375    return h32;
376}
377
378
379XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
380{
381#if 0
382    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
383    XXH32_CREATESTATE_STATIC(state);
384    XXH32_reset(state, seed);
385    XXH32_update(state, input, len);
386    return XXH32_digest(state);
387#else
388    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
389
390    if (XXH_FORCE_ALIGN_CHECK) {
391        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
392            if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
393                return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
394            else
395                return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
396    }   }
397
398    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
399        return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
400    else
401        return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
402#endif
403}
404
405
406static U64 XXH64_round(U64 acc, U64 input)
407{
408    acc += input * PRIME64_2;
409    acc  = XXH_rotl64(acc, 31);
410    acc *= PRIME64_1;
411    return acc;
412}
413
414static U64 XXH64_mergeRound(U64 acc, U64 val)
415{
416    val  = XXH64_round(0, val);
417    acc ^= val;
418    acc  = acc * PRIME64_1 + PRIME64_4;
419    return acc;
420}
421
422FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
423{
424    const BYTE* p = (const BYTE*)input;
425    const BYTE* const bEnd = p + len;
426    U64 h64;
427#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
428
429#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
430    if (p==NULL) {
431        len=0;
432        bEnd=p=(const BYTE*)(size_t)32;
433    }
434#endif
435
436    if (len>=32) {
437        const BYTE* const limit = bEnd - 32;
438        U64 v1 = seed + PRIME64_1 + PRIME64_2;
439        U64 v2 = seed + PRIME64_2;
440        U64 v3 = seed + 0;
441        U64 v4 = seed - PRIME64_1;
442
443        do {
444            v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
445            v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
446            v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
447            v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
448        } while (p<=limit);
449
450        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
451        h64 = XXH64_mergeRound(h64, v1);
452        h64 = XXH64_mergeRound(h64, v2);
453        h64 = XXH64_mergeRound(h64, v3);
454        h64 = XXH64_mergeRound(h64, v4);
455
456    } else {
457        h64  = seed + PRIME64_5;
458    }
459
460    h64 += (U64) len;
461
462    while (p+8<=bEnd) {
463        U64 const k1 = XXH64_round(0, XXH_get64bits(p));
464        h64 ^= k1;
465        h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
466        p+=8;
467    }
468
469    if (p+4<=bEnd) {
470        h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
471        h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
472        p+=4;
473    }
474
475    while (p<bEnd) {
476        h64 ^= (*p) * PRIME64_5;
477        h64 = XXH_rotl64(h64, 11) * PRIME64_1;
478        p++;
479    }
480
481    h64 ^= h64 >> 33;
482    h64 *= PRIME64_2;
483    h64 ^= h64 >> 29;
484    h64 *= PRIME64_3;
485    h64 ^= h64 >> 32;
486
487    return h64;
488}
489
490
491XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
492{
493#if 0
494    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
495    XXH64_CREATESTATE_STATIC(state);
496    XXH64_reset(state, seed);
497    XXH64_update(state, input, len);
498    return XXH64_digest(state);
499#else
500    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
501
502    if (XXH_FORCE_ALIGN_CHECK) {
503        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
504            if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
505                return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
506            else
507                return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
508    }   }
509
510    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
511        return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
512    else
513        return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
514#endif
515}
516
517
518/* **************************************************
519*  Advanced Hash Functions
520****************************************************/
521
522XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
523{
524    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
525}
526XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
527{
528    XXH_free(statePtr);
529    return XXH_OK;
530}
531
532XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
533{
534    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
535}
536XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
537{
538    XXH_free(statePtr);
539    return XXH_OK;
540}
541
542
543/*** Hash feed ***/
544
545XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
546{
547    XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
548    memset(&state, 0, sizeof(state));
549    state.seed = seed;
550    state.v1 = seed + PRIME32_1 + PRIME32_2;
551    state.v2 = seed + PRIME32_2;
552    state.v3 = seed + 0;
553    state.v4 = seed - PRIME32_1;
554    memcpy(statePtr, &state, sizeof(state));
555    return XXH_OK;
556}
557
558
559XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
560{
561    XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
562    memset(&state, 0, sizeof(state));
563    state.seed = seed;
564    state.v1 = seed + PRIME64_1 + PRIME64_2;
565    state.v2 = seed + PRIME64_2;
566    state.v3 = seed + 0;
567    state.v4 = seed - PRIME64_1;
568    memcpy(statePtr, &state, sizeof(state));
569    return XXH_OK;
570}
571
572
573FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
574{
575    const BYTE* p = (const BYTE*)input;
576    const BYTE* const bEnd = p + len;
577
578#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
579    if (input==NULL) return XXH_ERROR;
580#endif
581
582    state->total_len += len;
583
584    if (state->memsize + len < 16)  {   /* fill in tmp buffer */
585        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
586        state->memsize += (U32)len;
587        return XXH_OK;
588    }
589
590    if (state->memsize) {   /* some data left from previous update */
591        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
592        {   const U32* p32 = state->mem32;
593            state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
594            state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
595            state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
596            state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
597        }
598        p += 16-state->memsize;
599        state->memsize = 0;
600    }
601
602    if (p <= bEnd-16) {
603        const BYTE* const limit = bEnd - 16;
604        U32 v1 = state->v1;
605        U32 v2 = state->v2;
606        U32 v3 = state->v3;
607        U32 v4 = state->v4;
608
609        do {
610            v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
611            v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
612            v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
613            v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
614        } while (p<=limit);
615
616        state->v1 = v1;
617        state->v2 = v2;
618        state->v3 = v3;
619        state->v4 = v4;
620    }
621
622    if (p < bEnd) {
623        XXH_memcpy(state->mem32, p, bEnd-p);
624        state->memsize = (int)(bEnd-p);
625    }
626
627    return XXH_OK;
628}
629
630XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
631{
632    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
633
634    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
635        return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
636    else
637        return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
638}
639
640
641
642FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
643{
644    const BYTE * p = (const BYTE*)state->mem32;
645    const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
646    U32 h32;
647
648    if (state->total_len >= 16) {
649        h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
650    } else {
651        h32 = state->seed + PRIME32_5;
652    }
653
654    h32 += (U32) state->total_len;
655
656    while (p+4<=bEnd) {
657        h32 += XXH_readLE32(p, endian) * PRIME32_3;
658        h32  = XXH_rotl32(h32, 17) * PRIME32_4;
659        p+=4;
660    }
661
662    while (p<bEnd) {
663        h32 += (*p) * PRIME32_5;
664        h32  = XXH_rotl32(h32, 11) * PRIME32_1;
665        p++;
666    }
667
668    h32 ^= h32 >> 15;
669    h32 *= PRIME32_2;
670    h32 ^= h32 >> 13;
671    h32 *= PRIME32_3;
672    h32 ^= h32 >> 16;
673
674    return h32;
675}
676
677
678XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
679{
680    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
681
682    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
683        return XXH32_digest_endian(state_in, XXH_littleEndian);
684    else
685        return XXH32_digest_endian(state_in, XXH_bigEndian);
686}
687
688
689
690/* **** XXH64 **** */
691
692FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
693{
694    const BYTE* p = (const BYTE*)input;
695    const BYTE* const bEnd = p + len;
696
697#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
698    if (input==NULL) return XXH_ERROR;
699#endif
700
701    state->total_len += len;
702
703    if (state->memsize + len < 32) {  /* fill in tmp buffer */
704        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
705        state->memsize += (U32)len;
706        return XXH_OK;
707    }
708
709    if (state->memsize) {   /* tmp buffer is full */
710        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
711        state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
712        state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
713        state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
714        state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
715        p += 32-state->memsize;
716        state->memsize = 0;
717    }
718
719    if (p+32 <= bEnd) {
720        const BYTE* const limit = bEnd - 32;
721        U64 v1 = state->v1;
722        U64 v2 = state->v2;
723        U64 v3 = state->v3;
724        U64 v4 = state->v4;
725
726        do {
727            v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
728            v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
729            v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
730            v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
731        } while (p<=limit);
732
733        state->v1 = v1;
734        state->v2 = v2;
735        state->v3 = v3;
736        state->v4 = v4;
737    }
738
739    if (p < bEnd) {
740        XXH_memcpy(state->mem64, p, bEnd-p);
741        state->memsize = (int)(bEnd-p);
742    }
743
744    return XXH_OK;
745}
746
747XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
748{
749    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
750
751    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
752        return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
753    else
754        return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
755}
756
757
758
759FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
760{
761    const BYTE * p = (const BYTE*)state->mem64;
762    const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
763    U64 h64;
764
765    if (state->total_len >= 32) {
766        U64 const v1 = state->v1;
767        U64 const v2 = state->v2;
768        U64 const v3 = state->v3;
769        U64 const v4 = state->v4;
770
771        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
772        h64 = XXH64_mergeRound(h64, v1);
773        h64 = XXH64_mergeRound(h64, v2);
774        h64 = XXH64_mergeRound(h64, v3);
775        h64 = XXH64_mergeRound(h64, v4);
776    } else {
777        h64  = state->seed + PRIME64_5;
778    }
779
780    h64 += (U64) state->total_len;
781
782    while (p+8<=bEnd) {
783        U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
784        h64 ^= k1;
785        h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
786        p+=8;
787    }
788
789    if (p+4<=bEnd) {
790        h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
791        h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
792        p+=4;
793    }
794
795    while (p<bEnd) {
796        h64 ^= (*p) * PRIME64_5;
797        h64  = XXH_rotl64(h64, 11) * PRIME64_1;
798        p++;
799    }
800
801    h64 ^= h64 >> 33;
802    h64 *= PRIME64_2;
803    h64 ^= h64 >> 29;
804    h64 *= PRIME64_3;
805    h64 ^= h64 >> 32;
806
807    return h64;
808}
809
810
811XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
812{
813    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
814
815    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
816        return XXH64_digest_endian(state_in, XXH_littleEndian);
817    else
818        return XXH64_digest_endian(state_in, XXH_bigEndian);
819}
820
821
822/* **************************
823*  Canonical representation
824****************************/
825
826/*! Default XXH result types are basic unsigned 32 and 64 bits.
827*   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
828*   These functions allow transformation of hash result into and from its canonical format.
829*   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
830*/
831
832XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
833{
834    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
835    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
836    memcpy(dst, &hash, sizeof(*dst));
837}
838
839XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
840{
841    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
842    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
843    memcpy(dst, &hash, sizeof(*dst));
844}
845
846XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
847{
848    return XXH_readBE32(src);
849}
850
851XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
852{
853    return XXH_readBE64(src);
854}
Note: See TracBrowser for help on using the repository browser.