/** * @file szd_double_ts.c * @author Sheng Di and Dingwen Tao * @date Aug, 2016 * @brief * (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory. * See COPYRIGHT in top-level directory. */ #include #include #include #include "szd_double.h" #include "TightDataPointStorageD.h" #include "sz.h" #include "Huffman.h" #include "szd_double_ts.h" void decompressDataSeries_double_1D_ts(double** data, size_t dataSeriesLength, sz_multisteps* multisteps, TightDataPointStorageD* tdps) { double* lastSnapshotData = (double*)multisteps->hist_data; updateQuantizationInfo(tdps->intervals); size_t i, j, k = 0, p = 0, l = 0; // k is to track the location of residual_bit // in resiMidBits, p is to track the // byte_index of resiMidBits, l is for // leadNum unsigned char* leadNum; double interval = tdps->realPrecision*2; convertByteArray2IntArray_fast_2b(tdps->exactDataNum, tdps->leadNumArray, tdps->leadNumArray_size, &leadNum); *data = (double*)malloc(sizeof(double)*dataSeriesLength); int* type = (int*)malloc(dataSeriesLength*sizeof(int)); HuffmanTree* huffmanTree = createHuffmanTree(tdps->stateNum); decode_withTree(huffmanTree, tdps->typeArray, dataSeriesLength, type); SZ_ReleaseHuffman(huffmanTree); unsigned char preBytes[8]; unsigned char curBytes[8]; memset(preBytes, 0, 8); size_t curByteIndex = 0; int reqBytesLength, resiBitsLength, resiBits; unsigned char leadingNum; double medianValue, exactData, predValue = 0; reqBytesLength = tdps->reqLength/8; resiBitsLength = tdps->reqLength%8; medianValue = tdps->medianValue; int type_; for (i = 0; i < dataSeriesLength; i++) { type_ = type[i]; switch (type_) { case 0: // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[i] = exactData + medianValue; memcpy(preBytes,curBytes,8); break; default: //predValue = (*data)[i-1]; if(confparams_dec->szMode == SZ_TEMPORAL_COMPRESSION) predValue = lastSnapshotData[i]; (*data)[i] = predValue + (type_-exe_params->intvRadius)*interval; break; } //printf("%.30G\n",(*data)[i]); } memcpy(multisteps->hist_data, (*data), dataSeriesLength*sizeof(double)); free(leadNum); free(type); return; }