/** * @file szd_double.c * @author Sheng Di and Dingwen Tao * @date Aug, 2016 * @brief * (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory. * See COPYRIGHT in top-level directory. */ #include #include #include #include "szd_double.h" #include "TightDataPointStorageD.h" #include "sz.h" #include "Huffman.h" #include "szd_double_pwr.h" #include "szd_double_ts.h" #include "utility.h" int SZ_decompress_args_double(double** newData, size_t r5, size_t r4, size_t r3, size_t r2, size_t r1, unsigned char* cmpBytes, size_t cmpSize) { int status = SZ_SCES; size_t dataLength = computeDataLength(r5,r4,r3,r2,r1); //unsigned char* tmpBytes; size_t targetUncompressSize = dataLength <<3; //i.e., *8 //tmpSize must be "much" smaller than dataLength size_t i, tmpSize = 12+MetaDataByteLength+exe_params->SZ_SIZE_TYPE; unsigned char* szTmpBytes; if(cmpSize!=12+4+MetaDataByteLength && cmpSize!=12+8+MetaDataByteLength) { confparams_dec->losslessCompressor = is_lossless_compressed_data(cmpBytes, cmpSize); if(confparams_dec->szMode!=SZ_TEMPORAL_COMPRESSION) { if(confparams_dec->losslessCompressor!=-1) confparams_dec->szMode = SZ_BEST_COMPRESSION; else confparams_dec->szMode = SZ_BEST_SPEED; } if(confparams_dec->szMode==SZ_BEST_SPEED) { tmpSize = cmpSize; szTmpBytes = cmpBytes; } else if(confparams_dec->szMode==SZ_BEST_COMPRESSION || confparams_dec->szMode==SZ_DEFAULT_COMPRESSION || confparams_dec->szMode==SZ_TEMPORAL_COMPRESSION) { if(targetUncompressSizelosslessCompressor, cmpBytes, (unsigned long)cmpSize, &szTmpBytes, (unsigned long)targetUncompressSize+4+MetaDataByteLength+exe_params->SZ_SIZE_TYPE); //szTmpBytes = (unsigned char*)malloc(sizeof(unsigned char)*tmpSize); //memcpy(szTmpBytes, tmpBytes, tmpSize); //free(tmpBytes); //release useless memory } else { printf("Wrong value of confparams_dec->szMode in the double compressed bytes.\n"); status = SZ_MERR; return status; } } else szTmpBytes = cmpBytes; //TODO: convert szTmpBytes to double array. TightDataPointStorageD* tdps; int errBoundMode = new_TightDataPointStorageD_fromFlatBytes(&tdps, szTmpBytes, tmpSize); int dim = computeDimension(r5,r4,r3,r2,r1); int doubleSize = sizeof(double); if(tdps->isLossless) { *newData = (double*)malloc(doubleSize*dataLength); if(sysEndianType==BIG_ENDIAN_SYSTEM) { memcpy(*newData, szTmpBytes+4+MetaDataByteLength+exe_params->SZ_SIZE_TYPE, dataLength*doubleSize); } else { unsigned char* p = szTmpBytes+4+MetaDataByteLength+exe_params->SZ_SIZE_TYPE; for(i=0;iraBytes_size > 0) //v2.0 { if (dim == 1) getSnapshotData_double_1D(newData,r1,tdps, errBoundMode); else if(dim == 2) decompressDataSeries_double_2D_nonblocked_with_blocked_regression(newData, r2, r1, tdps->raBytes); else if(dim == 3) decompressDataSeries_double_3D_nonblocked_with_blocked_regression(newData, r3, r2, r1, tdps->raBytes); else if(dim == 4) decompressDataSeries_double_3D_nonblocked_with_blocked_regression(newData, r4*r3, r2, r1, tdps->raBytes); else { printf("Error: currently support only at most 4 dimensions!\n"); status = SZ_DERR; } } else //1.4.13 { if (dim == 1) getSnapshotData_double_1D(newData,r1,tdps, errBoundMode); else if (dim == 2) getSnapshotData_double_2D(newData,r2,r1,tdps, errBoundMode); else if (dim == 3) getSnapshotData_double_3D(newData,r3,r2,r1,tdps, errBoundMode); else if (dim == 4) getSnapshotData_double_4D(newData,r4,r3,r2,r1,tdps, errBoundMode); else { printf("Error: currently support only at most 4 dimensions!\n"); status = SZ_DERR; } } } free_TightDataPointStorageD2(tdps); if(confparams_dec->szMode!=SZ_BEST_SPEED && cmpSize!=12+MetaDataByteLength+exe_params->SZ_SIZE_TYPE) free(szTmpBytes); return status; } void decompressDataSeries_double_1D(double** data, size_t dataSeriesLength, TightDataPointStorageD* tdps) { updateQuantizationInfo(tdps->intervals); size_t i, j, k = 0, p = 0, l = 0; // k is to track the location of residual_bit // in resiMidBits, p is to track the // byte_index of resiMidBits, l is for // leadNum unsigned char* leadNum; double interval = tdps->realPrecision*2; convertByteArray2IntArray_fast_2b(tdps->exactDataNum, tdps->leadNumArray, tdps->leadNumArray_size, &leadNum); *data = (double*)malloc(sizeof(double)*dataSeriesLength); int* type = (int*)malloc(dataSeriesLength*sizeof(int)); HuffmanTree* huffmanTree = createHuffmanTree(tdps->stateNum); decode_withTree(huffmanTree, tdps->typeArray, dataSeriesLength, type); SZ_ReleaseHuffman(huffmanTree); unsigned char preBytes[8]; unsigned char curBytes[8]; memset(preBytes, 0, 8); size_t curByteIndex = 0; int reqBytesLength, resiBitsLength, resiBits; unsigned char leadingNum; double medianValue, exactData, predValue; reqBytesLength = tdps->reqLength/8; resiBitsLength = tdps->reqLength%8; medianValue = tdps->medianValue; int type_; for (i = 0; i < dataSeriesLength; i++) { type_ = type[i]; switch (type_) { case 0: // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[i] = exactData + medianValue; memcpy(preBytes,curBytes,8); break; default: //predValue = 2 * (*data)[i-1] - (*data)[i-2]; predValue = (*data)[i-1]; (*data)[i] = predValue + (type_-exe_params->intvRadius)*interval; break; } //printf("%.30G\n",(*data)[i]); } #ifdef HAVE_TIMECMPR if(confparams_dec->szMode == SZ_TEMPORAL_COMPRESSION) memcpy(multisteps->hist_data, (*data), dataSeriesLength*sizeof(double)); #endif free(leadNum); free(type); return; } void decompressDataSeries_double_2D(double** data, size_t r1, size_t r2, TightDataPointStorageD* tdps) { updateQuantizationInfo(tdps->intervals); //printf("tdps->intervals=%d, exe_params->intvRadius=%d\n", tdps->intervals, exe_params->intvRadius); size_t j, k = 0, p = 0, l = 0; // k is to track the location of residual_bit // in resiMidBits, p is to track the // byte_index of resiMidBits, l is for // leadNum size_t dataSeriesLength = r1*r2; // printf ("%d %d\n", r1, r2); unsigned char* leadNum; double realPrecision = tdps->realPrecision; convertByteArray2IntArray_fast_2b(tdps->exactDataNum, tdps->leadNumArray, tdps->leadNumArray_size, &leadNum); *data = (double*)malloc(sizeof(double)*dataSeriesLength); int* type = (int*)malloc(dataSeriesLength*sizeof(int)); HuffmanTree* huffmanTree = createHuffmanTree(tdps->stateNum); decode_withTree(huffmanTree, tdps->typeArray, dataSeriesLength, type); SZ_ReleaseHuffman(huffmanTree); unsigned char preBytes[8]; unsigned char curBytes[8]; memset(preBytes, 0, 8); size_t curByteIndex = 0; int reqBytesLength, resiBitsLength, resiBits; unsigned char leadingNum; double medianValue, exactData; int type_; reqBytesLength = tdps->reqLength/8; resiBitsLength = tdps->reqLength%8; medianValue = tdps->medianValue; double pred1D, pred2D; size_t ii, jj; /* Process Row-0, data 0 */ // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[0] = exactData + medianValue; memcpy(preBytes,curBytes,8); /* Process Row-0, data 1 */ type_ = type[1]; if (type_ != 0) { pred1D = (*data)[0]; (*data)[1] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[1] = exactData + medianValue; memcpy(preBytes,curBytes,8); } /* Process Row-0, data 2 --> data r2-1 */ for (jj = 2; jj < r2; jj++) { type_ = type[jj]; if (type_ != 0) { pred1D = 2*(*data)[jj-1] - (*data)[jj-2]; (*data)[jj] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[jj] = exactData + medianValue; memcpy(preBytes,curBytes,8); } } size_t index; /* Process Row-1 --> Row-r1-1 */ for (ii = 1; ii < r1; ii++) { /* Process row-ii data 0 */ index = ii*r2; type_ = type[index]; if (type_ != 0) { pred1D = (*data)[index-r2]; (*data)[index] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } /* Process row-ii data 1 --> r2-1*/ for (jj = 1; jj < r2; jj++) { index = ii*r2+jj; pred2D = (*data)[index-1] + (*data)[index-r2] - (*data)[index-r2-1]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred2D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } } } #ifdef HAVE_TIMECMPR if(confparams_dec->szMode == SZ_TEMPORAL_COMPRESSION) memcpy(multisteps->hist_data, (*data), dataSeriesLength*sizeof(double)); #endif free(leadNum); free(type); return; } void decompressDataSeries_double_3D(double** data, size_t r1, size_t r2, size_t r3, TightDataPointStorageD* tdps) { updateQuantizationInfo(tdps->intervals); size_t j, k = 0, p = 0, l = 0; // k is to track the location of residual_bit // in resiMidBits, p is to track the // byte_index of resiMidBits, l is for // leadNum size_t dataSeriesLength = r1*r2*r3; size_t r23 = r2*r3; // printf ("%d %d %d\n", r1, r2, r3); unsigned char* leadNum; double realPrecision = tdps->realPrecision; convertByteArray2IntArray_fast_2b(tdps->exactDataNum, tdps->leadNumArray, tdps->leadNumArray_size, &leadNum); *data = (double*)malloc(sizeof(double)*dataSeriesLength); int* type = (int*)malloc(dataSeriesLength*sizeof(int)); HuffmanTree* huffmanTree = createHuffmanTree(tdps->stateNum); decode_withTree(huffmanTree, tdps->typeArray, dataSeriesLength, type); SZ_ReleaseHuffman(huffmanTree); unsigned char preBytes[8]; unsigned char curBytes[8]; memset(preBytes, 0, 8); size_t curByteIndex = 0; int reqBytesLength, resiBitsLength, resiBits; unsigned char leadingNum; double medianValue, exactData; int type_; reqBytesLength = tdps->reqLength/8; resiBitsLength = tdps->reqLength%8; medianValue = tdps->medianValue; double pred1D, pred2D, pred3D; size_t ii, jj, kk; /////////////////////////// Process layer-0 /////////////////////////// /* Process Row-0 data 0*/ // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[0] = exactData + medianValue; memcpy(preBytes,curBytes,8); /* Process Row-0, data 1 */ pred1D = (*data)[0]; type_ = type[1]; if (type_ != 0) { (*data)[1] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[1] = exactData + medianValue; memcpy(preBytes,curBytes,8); } /* Process Row-0, data 2 --> data r3-1 */ for (jj = 2; jj < r3; jj++) { pred1D = 2*(*data)[jj-1] - (*data)[jj-2]; type_ = type[jj]; if (type_ != 0) { (*data)[jj] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[jj] = exactData + medianValue; memcpy(preBytes,curBytes,8); } } size_t index; /* Process Row-1 --> Row-r2-1 */ for (ii = 1; ii < r2; ii++) { /* Process row-ii data 0 */ index = ii*r3; pred1D = (*data)[index-r3]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } /* Process row-ii data 1 --> r3-1*/ for (jj = 1; jj < r3; jj++) { index = ii*r3+jj; pred2D = (*data)[index-1] + (*data)[index-r3] - (*data)[index-r3-1]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred2D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } } } /////////////////////////// Process layer-1 --> layer-r1-1 /////////////////////////// for (kk = 1; kk < r1; kk++) { /* Process Row-0 data 0*/ index = kk*r23; pred1D = (*data)[index-r23]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } /* Process Row-0 data 1 --> data r3-1 */ for (jj = 1; jj < r3; jj++) { index = kk*r23+jj; pred2D = (*data)[index-1] + (*data)[index-r23] - (*data)[index-r23-1]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred2D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } } /* Process Row-1 --> Row-r2-1 */ for (ii = 1; ii < r2; ii++) { /* Process Row-i data 0 */ index = kk*r23 + ii*r3; pred2D = (*data)[index-r3] + (*data)[index-r23] - (*data)[index-r23-r3]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred2D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } /* Process Row-i data 1 --> data r3-1 */ for (jj = 1; jj < r3; jj++) { index = kk*r23 + ii*r3 + jj; pred3D = (*data)[index-1] + (*data)[index-r3] + (*data)[index-r23] - (*data)[index-r3-1] - (*data)[index-r23-r3] - (*data)[index-r23-1] + (*data)[index-r23-r3-1]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred3D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } } } } #ifdef HAVE_TIMECMPR if(confparams_dec->szMode == SZ_TEMPORAL_COMPRESSION) memcpy(multisteps->hist_data, (*data), dataSeriesLength*sizeof(double)); #endif free(leadNum); free(type); return; } void decompressDataSeries_double_4D(double** data, size_t r1, size_t r2, size_t r3, size_t r4, TightDataPointStorageD* tdps) { updateQuantizationInfo(tdps->intervals); size_t j, k = 0, p = 0, l = 0; // k is to track the location of residual_bit // in resiMidBits, p is to track the // byte_index of resiMidBits, l is for // leadNum size_t dataSeriesLength = r1*r2*r3*r4; size_t r234 = r2*r3*r4; size_t r34 = r3*r4; // printf ("%d %d %d\n", r1, r2, r3, r4); unsigned char* leadNum; double realPrecision = tdps->realPrecision; convertByteArray2IntArray_fast_2b(tdps->exactDataNum, tdps->leadNumArray, tdps->leadNumArray_size, &leadNum); *data = (double*)malloc(sizeof(double)*dataSeriesLength); int* type = (int*)malloc(dataSeriesLength*sizeof(int)); HuffmanTree* huffmanTree = createHuffmanTree(tdps->stateNum); decode_withTree(huffmanTree, tdps->typeArray, dataSeriesLength, type); SZ_ReleaseHuffman(huffmanTree); unsigned char preBytes[8]; unsigned char curBytes[8]; memset(preBytes, 0, 8); size_t curByteIndex = 0; int reqBytesLength, resiBitsLength, resiBits; unsigned char leadingNum; double medianValue, exactData; int type_; reqBytesLength = tdps->reqLength/8; resiBitsLength = tdps->reqLength%8; medianValue = tdps->medianValue; double pred1D, pred2D, pred3D; size_t ii, jj, kk, ll; size_t index; for (ll = 0; ll < r1; ll++) { /////////////////////////// Process layer-0 /////////////////////////// /* Process Row-0 data 0*/ index = ll*r234; // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); /* Process Row-0, data 1 */ index = ll*r234+1; pred1D = (*data)[index-1]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } /* Process Row-0, data 2 --> data r4-1 */ for (jj = 2; jj < r4; jj++) { index = ll*r234+jj; pred1D = 2*(*data)[index-1] - (*data)[index-2]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } } /* Process Row-1 --> Row-r3-1 */ for (ii = 1; ii < r3; ii++) { /* Process row-ii data 0 */ index = ll*r234+ii*r4; pred1D = (*data)[index-r4]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } /* Process row-ii data 1 --> r4-1*/ for (jj = 1; jj < r4; jj++) { index = ll*r234+ii*r4+jj; pred2D = (*data)[index-1] + (*data)[index-r4] - (*data)[index-r4-1]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred2D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } } } /////////////////////////// Process layer-1 --> layer-r2-1 /////////////////////////// for (kk = 1; kk < r2; kk++) { /* Process Row-0 data 0*/ index = ll*r234+kk*r34; pred1D = (*data)[index-r34]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred1D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } /* Process Row-0 data 1 --> data r4-1 */ for (jj = 1; jj < r4; jj++) { index = ll*r234+kk*r34+jj; pred2D = (*data)[index-1] + (*data)[index-r34] - (*data)[index-r34-1]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred2D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } } /* Process Row-1 --> Row-r3-1 */ for (ii = 1; ii < r3; ii++) { /* Process Row-i data 0 */ index = ll*r234+kk*r34+ii*r4; pred2D = (*data)[index-r4] + (*data)[index-r34] - (*data)[index-r34-r4]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred2D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } /* Process Row-i data 1 --> data r4-1 */ for (jj = 1; jj < r4; jj++) { index = ll*r234+kk*r34+ii*r4+jj; pred3D = (*data)[index-1] + (*data)[index-r4] + (*data)[index-r34] - (*data)[index-r4-1] - (*data)[index-r34-r4] - (*data)[index-r34-1] + (*data)[index-r34-r4-1]; type_ = type[index]; if (type_ != 0) { (*data)[index] = pred3D + 2 * (type_ - exe_params->intvRadius) * realPrecision; } else { // compute resiBits resiBits = 0; if (resiBitsLength != 0) { int kMod8 = k % 8; int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength); if (rightMovSteps > 0) { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps; } else if (rightMovSteps < 0) { int code1 = getLeftMovingCode(kMod8); int code2 = getRightMovingCode(kMod8, resiBitsLength); int leftMovSteps = -rightMovSteps; rightMovSteps = 8 - leftMovSteps; resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps; p++; resiBits = resiBits | ((tdps->residualMidBits[p] & code2) >> rightMovSteps); } else // rightMovSteps == 0 { int code = getRightMovingCode(kMod8, resiBitsLength); resiBits = (tdps->residualMidBits[p] & code); p++; } k += resiBitsLength; } // recover the exact data memset(curBytes, 0, 8); leadingNum = leadNum[l++]; memcpy(curBytes, preBytes, leadingNum); for (j = leadingNum; j < reqBytesLength; j++) curBytes[j] = tdps->exactMidBytes[curByteIndex++]; if (resiBitsLength != 0) { unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength)); curBytes[reqBytesLength] = resiByte; } exactData = bytesToDouble(curBytes); (*data)[index] = exactData + medianValue; memcpy(preBytes,curBytes,8); } } } } } //I didn't implement time-based compression for 4D actually. //#ifdef HAVE_TIMECMPR // if(confparams_dec->szMode == SZ_TEMPORAL_COMPRESSION) // memcpy(multisteps->hist_data, (*data), dataSeriesLength*sizeof(double)); //#endif free(leadNum); free(type); return; } void getSnapshotData_double_1D(double** data, size_t dataSeriesLength, TightDataPointStorageD* tdps, int errBoundMode) { size_t i; if (tdps->allSameData) { double value = bytesToDouble(tdps->exactMidBytes); *data = (double*)malloc(sizeof(double)*dataSeriesLength); for (i = 0; i < dataSeriesLength; i++) (*data)[i] = value; } else { if (tdps->rtypeArray == NULL) { if(errBoundMode < PW_REL) { #ifdef HAVE_TIMECMPR if(confparams_dec->szMode == SZ_TEMPORAL_COMPRESSION) { if(multisteps->compressionType == 0) //snapshot decompressDataSeries_double_1D(data, dataSeriesLength, tdps); else decompressDataSeries_double_1D_ts(data, dataSeriesLength, multisteps, tdps); } else #endif decompressDataSeries_double_1D(data, dataSeriesLength, tdps); } else { decompressDataSeries_double_1D_pwr_pre_log(data, dataSeriesLength, tdps); //decompressDataSeries_double_1D_pwrgroup(data, dataSeriesLength, tdps); } return; } else { *data = (double*)malloc(sizeof(double)*dataSeriesLength); // insert the reserved values //int[] rtypes = TypeManager.convertByteArray2IntArray_fast_1b( // dataSeriesLength, rtypeArray); int* rtypes; int validLength = computeBitNumRequired(dataSeriesLength); decompressBitArraybySimpleLZ77(&rtypes, tdps->rtypeArray, tdps->rtypeArray_size, dataSeriesLength, validLength); size_t count = 0; for (i = 0; i < dataSeriesLength; i++) { if (rtypes[i] == 1) (*data)[i] = tdps->reservedValue; else count++; } // get the decompressed data double* decmpData; if(errBoundMode < PW_REL) decompressDataSeries_double_1D(&decmpData, dataSeriesLength, tdps); else //decompressDataSeries_double_1D_pwr(&decmpData, dataSeriesLength, tdps); decompressDataSeries_double_1D_pwr_pre_log(&decmpData, dataSeriesLength, tdps); // insert the decompressed data size_t k = 0; for (i = 0; i < dataSeriesLength; i++) { if (rtypes[i] == 0) { (*data)[i] = decmpData[k++]; } } free(decmpData); free(rtypes); } } } void getSnapshotData_double_2D(double** data, size_t r1, size_t r2, TightDataPointStorageD* tdps, int errBoundMode) { size_t i; size_t dataSeriesLength = r1*r2; if (tdps->allSameData) { double value = bytesToDouble(tdps->exactMidBytes); *data = (double*)malloc(sizeof(double)*dataSeriesLength); for (i = 0; i < dataSeriesLength; i++) (*data)[i] = value; } else { if (tdps->rtypeArray == NULL) { if(errBoundMode < PW_REL) { #ifdef HAVE_TIMECMPR if(confparams_dec->szMode == SZ_TEMPORAL_COMPRESSION) { if(multisteps->compressionType == 0) //snapshot decompressDataSeries_double_2D(data, r1, r2, tdps); else decompressDataSeries_double_1D_ts(data, dataSeriesLength, multisteps, tdps); } else #endif decompressDataSeries_double_2D(data, r1, r2, tdps); } else //decompressDataSeries_double_2D_pwr(data, r1, r2, tdps); decompressDataSeries_double_2D_pwr_pre_log(data, r1, r2, tdps); return; } else { *data = (double*)malloc(sizeof(double)*dataSeriesLength); // insert the reserved values //int[] rtypes = TypeManager.convertByteArray2IntArray_fast_1b( // dataSeriesLength, rtypeArray); int* rtypes; int validLength = computeBitNumRequired(dataSeriesLength); decompressBitArraybySimpleLZ77(&rtypes, tdps->rtypeArray, tdps->rtypeArray_size, dataSeriesLength, validLength); size_t count = 0; for (i = 0; i < dataSeriesLength; i++) { if (rtypes[i] == 1) (*data)[i] = tdps->reservedValue; else count++; } // get the decompressed data double* decmpData; if(errBoundMode < PW_REL) decompressDataSeries_double_2D(&decmpData, r1, r2, tdps); else //decompressDataSeries_double_2D_pwr(&decmpData, r1, r2, tdps); decompressDataSeries_double_2D_pwr_pre_log(&decmpData, r1, r2, tdps); // insert the decompressed data size_t k = 0; for (i = 0; i < dataSeriesLength; i++) { if (rtypes[i] == 0) { (*data)[i] = decmpData[k++]; } } free(decmpData); free(rtypes); } } } void getSnapshotData_double_3D(double** data, size_t r1, size_t r2, size_t r3, TightDataPointStorageD* tdps, int errBoundMode) { size_t i; size_t dataSeriesLength = r1*r2*r3; if (tdps->allSameData) { double value = bytesToDouble(tdps->exactMidBytes); *data = (double*)malloc(sizeof(double)*dataSeriesLength); for (i = 0; i < dataSeriesLength; i++) (*data)[i] = value; } else { if (tdps->rtypeArray == NULL) { if(errBoundMode < PW_REL) { #ifdef HAVE_TIMECMPR if(confparams_dec->szMode == SZ_TEMPORAL_COMPRESSION) { if(multisteps->compressionType == 0) //snapshot decompressDataSeries_double_3D(data, r1, r2, r3, tdps); else decompressDataSeries_double_1D_ts(data, dataSeriesLength, multisteps, tdps); } else #endif decompressDataSeries_double_3D(data, r1, r2, r3, tdps); } else //decompressDataSeries_double_3D_pwr(data, r1, r2, r3, tdps); decompressDataSeries_double_3D_pwr_pre_log(data, r1, r2, r3, tdps); return; } else { *data = (double*)malloc(sizeof(double)*dataSeriesLength); // insert the reserved values //int[] rtypes = TypeManager.convertByteArray2IntArray_fast_1b( // dataSeriesLength, rtypeArray); int* rtypes; int validLength = computeBitNumRequired(dataSeriesLength); decompressBitArraybySimpleLZ77(&rtypes, tdps->rtypeArray, tdps->rtypeArray_size, dataSeriesLength, validLength); size_t count = 0; for (i = 0; i < dataSeriesLength; i++) { if (rtypes[i] == 1) (*data)[i] = tdps->reservedValue; else count++; } // get the decompressed data double* decmpData; if(errBoundMode < PW_REL) decompressDataSeries_double_3D(&decmpData, r1, r2, r3, tdps); else //decompressDataSeries_double_3D_pwr(&decmpData, r1, r2, r3, tdps); decompressDataSeries_double_3D_pwr_pre_log(&decmpData, r1, r2, r3, tdps); // insert the decompressed data size_t k = 0; for (i = 0; i < dataSeriesLength; i++) { if (rtypes[i] == 0) { (*data)[i] = decmpData[k++]; } } free(decmpData); free(rtypes); } } } void getSnapshotData_double_4D(double** data, size_t r1, size_t r2, size_t r3, size_t r4, TightDataPointStorageD* tdps, int errBoundMode) { size_t i; size_t dataSeriesLength = r1*r2*r3*r4; if (tdps->allSameData) { double value = bytesToDouble(tdps->exactMidBytes); *data = (double*)malloc(sizeof(double)*dataSeriesLength); for (i = 0; i < dataSeriesLength; i++) (*data)[i] = value; } else { if (tdps->rtypeArray == NULL) { if(errBoundMode < PW_REL) { #ifdef HAVE_TIMECMPR if(confparams_dec->szMode == SZ_TEMPORAL_COMPRESSION) { if(multisteps->compressionType == 0) decompressDataSeries_double_4D(data, r1, r2, r3, r4, tdps); else decompressDataSeries_double_1D_ts(data, r1*r2*r3*r4, multisteps, tdps); } else #endif decompressDataSeries_double_4D(data, r1, r2, r3, r4, tdps); } else { //decompressDataSeries_double_3D_pwr(data, r1*r2, r3, r4, tdps); decompressDataSeries_double_3D_pwr_pre_log(data, r1*r2, r3, r4, tdps); //ToDO //decompressDataSeries_double_4D_pwr(data, r1, r2, r3, r4, tdps); } return; } else { *data = (double*)malloc(sizeof(double)*dataSeriesLength); int* rtypes; int validLength = computeBitNumRequired(dataSeriesLength); decompressBitArraybySimpleLZ77(&rtypes, tdps->rtypeArray, tdps->rtypeArray_size, dataSeriesLength, validLength); size_t count = 0; for (i = 0; i < dataSeriesLength; i++) { if (rtypes[i] == 1) (*data)[i] = tdps->reservedValue; else count++; } // get the decompressed data double* decmpData; if(errBoundMode < PW_REL) decompressDataSeries_double_4D(&decmpData, r1, r2, r3, r4, tdps); else //decompressDataSeries_double_3D_pwr(&decmpData, r1*r2, r3, r4, tdps); decompressDataSeries_double_3D_pwr_pre_log(&decmpData, r1*r2, r3, r4, tdps); //ToDo //decompressDataSeries_double_4D_pwr(&decmpData, r1, r2, r3, r4, tdps); // insert the decompressed data size_t k = 0; for (i = 0; i < dataSeriesLength; i++) { if (rtypes[i] == 0) { (*data)[i] = decmpData[k++]; } } free(decmpData); free(rtypes); } } } void decompressDataSeries_double_2D_nonblocked_with_blocked_regression(double** data, size_t r1, size_t r2, unsigned char* comp_data){ size_t dim0_offset = r2; size_t num_elements = r1 * r2; *data = (double*)malloc(sizeof(double)*num_elements); unsigned char * comp_data_pos = comp_data; size_t block_size = bytesToInt_bigEndian(comp_data_pos); comp_data_pos += sizeof(int); // calculate block dims size_t num_x, num_y; SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r1, num_x, block_size); SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r2, num_y, block_size); size_t split_index_x, split_index_y; size_t early_blockcount_x, early_blockcount_y; size_t late_blockcount_x, late_blockcount_y; SZ_COMPUTE_BLOCKCOUNT(r1, num_x, split_index_x, early_blockcount_x, late_blockcount_x); SZ_COMPUTE_BLOCKCOUNT(r2, num_y, split_index_y, early_blockcount_y, late_blockcount_y); size_t num_blocks = num_x * num_y; double realPrecision = bytesToDouble(comp_data_pos); comp_data_pos += sizeof(double); unsigned int intervals = bytesToInt_bigEndian(comp_data_pos); comp_data_pos += sizeof(int); updateQuantizationInfo(intervals); unsigned int tree_size = bytesToInt_bigEndian(comp_data_pos); comp_data_pos += sizeof(int); int stateNum = 2*intervals; HuffmanTree* huffmanTree = createHuffmanTree(stateNum); int nodeCount = bytesToInt_bigEndian(comp_data_pos); node root = reconstruct_HuffTree_from_bytes_anyStates(huffmanTree,comp_data_pos+sizeof(int), nodeCount); comp_data_pos += sizeof(int) + tree_size; double mean; unsigned char use_mean; memcpy(&use_mean, comp_data_pos, sizeof(unsigned char)); comp_data_pos += sizeof(unsigned char); memcpy(&mean, comp_data_pos, sizeof(double)); comp_data_pos += sizeof(double); size_t reg_count = 0; unsigned char * indicator; size_t indicator_bitlength = (num_blocks - 1)/8 + 1; convertByteArray2IntArray_fast_1b(num_blocks, comp_data_pos, indicator_bitlength, &indicator); comp_data_pos += indicator_bitlength; for(size_t i=0; i 0){ for(int i=0; i<3; i++){ precision[i] = bytesToDouble(comp_data_pos); comp_data_pos += sizeof(double); coeff_intvRadius[i] = bytesToInt_bigEndian(comp_data_pos); comp_data_pos += sizeof(int); unsigned int tree_size = bytesToInt_bigEndian(comp_data_pos); comp_data_pos += sizeof(int); int stateNum = 2*coeff_intvRadius[i]*2; HuffmanTree* huffmanTree = createHuffmanTree(stateNum); int nodeCount = bytesToInt_bigEndian(comp_data_pos); node root = reconstruct_HuffTree_from_bytes_anyStates(huffmanTree, comp_data_pos+sizeof(int), nodeCount); comp_data_pos += sizeof(int) + tree_size; coeff_type[i] = coeff_result_type + i * num_blocks; size_t typeArray_size = bytesToSize(comp_data_pos); decode(comp_data_pos + sizeof(size_t), reg_count, root, coeff_type[i]); comp_data_pos += sizeof(size_t) + typeArray_size; int coeff_unpred_count = bytesToInt_bigEndian(comp_data_pos); comp_data_pos += sizeof(int); coeff_unpred_data[i] = (double *) comp_data_pos; comp_data_pos += coeff_unpred_count * sizeof(double); SZ_ReleaseHuffman(huffmanTree); } } double last_coefficients[3] = {0.0}; int coeff_unpred_data_count[3] = {0}; int coeff_index = 0; updateQuantizationInfo(intervals); size_t total_unpred; memcpy(&total_unpred, comp_data_pos, sizeof(size_t)); comp_data_pos += sizeof(size_t); double * unpred_data = (double *) comp_data_pos; comp_data_pos += total_unpred * sizeof(double); int * result_type = (int *) malloc(num_elements * sizeof(int)); decode(comp_data_pos, num_elements, root, result_type); SZ_ReleaseHuffman(huffmanTree); int intvRadius = exe_params->intvRadius; int * type; double * data_pos = *data; size_t offset_x, offset_y; size_t current_blockcount_x, current_blockcount_y; size_t cur_unpred_count; unsigned char * indicator_pos = indicator; if(use_mean){ type = result_type; for(size_t i=0; i 0){ for(int i=0; i<4; i++){ precision[i] = bytesToDouble(comp_data_pos); comp_data_pos += sizeof(double); coeff_intvRadius[i] = bytesToInt_bigEndian(comp_data_pos); comp_data_pos += sizeof(int); unsigned int tree_size = bytesToInt_bigEndian(comp_data_pos); comp_data_pos += sizeof(int); int stateNum = 2*coeff_intvRadius[i]*2; HuffmanTree* huffmanTree = createHuffmanTree(stateNum); int nodeCount = bytesToInt_bigEndian(comp_data_pos); node root = reconstruct_HuffTree_from_bytes_anyStates(huffmanTree, comp_data_pos+4, nodeCount); comp_data_pos += sizeof(int) + tree_size; coeff_type[i] = coeff_result_type + i * num_blocks; size_t typeArray_size = bytesToSize(comp_data_pos); decode(comp_data_pos + sizeof(size_t), reg_count, root, coeff_type[i]); comp_data_pos += sizeof(size_t) + typeArray_size; int coeff_unpred_count = bytesToInt_bigEndian(comp_data_pos); comp_data_pos += sizeof(int); coeff_unpred_data[i] = (double *) comp_data_pos; comp_data_pos += coeff_unpred_count * sizeof(double); SZ_ReleaseHuffman(huffmanTree); } } double last_coefficients[4] = {0.0}; int coeff_unpred_data_count[4] = {0}; int coeff_index = 0; updateQuantizationInfo(intervals); size_t total_unpred; memcpy(&total_unpred, comp_data_pos, sizeof(size_t)); comp_data_pos += sizeof(size_t); double * unpred_data = (double *) comp_data_pos; comp_data_pos += total_unpred * sizeof(double); int * result_type = (int *) malloc(num_elements * sizeof(int)); decode(comp_data_pos, num_elements, root, result_type); SZ_ReleaseHuffman(huffmanTree); int intvRadius = exe_params->intvRadius; int * type; double * data_pos = *data; size_t offset_x, offset_y, offset_z; size_t current_blockcount_x, current_blockcount_y, current_blockcount_z; size_t cur_unpred_count; unsigned char * indicator_pos = indicator; if(use_mean){ // type = result_type; // for(size_t i=0; i 10000){ // printf("%d %d %d-%d: pred %.4f type %d precision %.4g last_coefficients %.4g\n", i, j, k, e, pred, type_, precision[e], last_coefficients[e]); // exit(0); // } // } // coeff_index ++; // } // { // double * block_data_pos = data_pos; // double pred; // int type_; // size_t index = 0; // size_t unpredictable_count = 0; // for(size_t ii=0; ii