1 | /** |
---|
2 | * @file sz_float.c |
---|
3 | * @author Sheng Di, Dingwen Tao, Xin Liang |
---|
4 | * @date Aug, 2016 |
---|
5 | * @brief SZ_Init, Compression and Decompression functions |
---|
6 | * (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory. |
---|
7 | * See COPYRIGHT in top-level directory. |
---|
8 | */ |
---|
9 | |
---|
10 | |
---|
11 | #include <stdio.h> |
---|
12 | #include <stdlib.h> |
---|
13 | #include <stddef.h> |
---|
14 | #include <string.h> |
---|
15 | #include <unistd.h> |
---|
16 | #include <math.h> |
---|
17 | #include "sz.h" |
---|
18 | #include "CompressElement.h" |
---|
19 | #include "DynamicByteArray.h" |
---|
20 | #include "DynamicIntArray.h" |
---|
21 | #include "TightDataPointStorageF.h" |
---|
22 | #include "sz_float.h" |
---|
23 | #include "sz_float_pwr.h" |
---|
24 | #include "szd_float.h" |
---|
25 | #include "szd_float_pwr.h" |
---|
26 | #include "zlib.h" |
---|
27 | #include "rw.h" |
---|
28 | #include "sz_float_ts.h" |
---|
29 | #include "utility.h" |
---|
30 | |
---|
31 | unsigned char* SZ_skip_compress_float(float* data, size_t dataLength, size_t* outSize) |
---|
32 | { |
---|
33 | *outSize = dataLength*sizeof(float); |
---|
34 | unsigned char* out = (unsigned char*)malloc(dataLength*sizeof(float)); |
---|
35 | memcpy(out, data, dataLength*sizeof(float)); |
---|
36 | return out; |
---|
37 | } |
---|
38 | unsigned int optimize_intervals_float_1D(float *oriData, size_t dataLength, double realPrecision) |
---|
39 | { |
---|
40 | size_t i = 0, radiusIndex; |
---|
41 | float pred_value = 0, pred_err; |
---|
42 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
43 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
44 | size_t totalSampleSize = dataLength/confparams_cpr->sampleDistance; |
---|
45 | for(i=2;i<dataLength;i++) |
---|
46 | { |
---|
47 | if(i%confparams_cpr->sampleDistance==0) |
---|
48 | { |
---|
49 | //pred_value = 2*oriData[i-1] - oriData[i-2]; |
---|
50 | pred_value = oriData[i-1]; |
---|
51 | pred_err = fabs(pred_value - oriData[i]); |
---|
52 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
53 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
54 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
55 | intervals[radiusIndex]++; |
---|
56 | } |
---|
57 | } |
---|
58 | //compute the appropriate number |
---|
59 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
60 | size_t sum = 0; |
---|
61 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
62 | { |
---|
63 | sum += intervals[i]; |
---|
64 | if(sum>targetCount) |
---|
65 | break; |
---|
66 | } |
---|
67 | if(i>=confparams_cpr->maxRangeRadius) |
---|
68 | i = confparams_cpr->maxRangeRadius-1; |
---|
69 | |
---|
70 | unsigned int accIntervals = 2*(i+1); |
---|
71 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
72 | |
---|
73 | if(powerOf2<32) |
---|
74 | powerOf2 = 32; |
---|
75 | |
---|
76 | free(intervals); |
---|
77 | //printf("accIntervals=%d, powerOf2=%d\n", accIntervals, powerOf2); |
---|
78 | return powerOf2; |
---|
79 | } |
---|
80 | |
---|
81 | unsigned int optimize_intervals_float_2D(float *oriData, size_t r1, size_t r2, double realPrecision) |
---|
82 | { |
---|
83 | size_t i,j, index; |
---|
84 | size_t radiusIndex; |
---|
85 | float pred_value = 0, pred_err; |
---|
86 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
87 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
88 | size_t totalSampleSize = (r1-1)*(r2-1)/confparams_cpr->sampleDistance; |
---|
89 | |
---|
90 | //float max = oriData[0]; |
---|
91 | //float min = oriData[0]; |
---|
92 | |
---|
93 | for(i=1;i<r1;i++) |
---|
94 | { |
---|
95 | for(j=1;j<r2;j++) |
---|
96 | { |
---|
97 | if((i+j)%confparams_cpr->sampleDistance==0) |
---|
98 | { |
---|
99 | index = i*r2+j; |
---|
100 | pred_value = oriData[index-1] + oriData[index-r2] - oriData[index-r2-1]; |
---|
101 | pred_err = fabs(pred_value - oriData[index]); |
---|
102 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
103 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
104 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
105 | intervals[radiusIndex]++; |
---|
106 | |
---|
107 | // if (max < oriData[index]) max = oriData[index]; |
---|
108 | // if (min > oriData[index]) min = oriData[index]; |
---|
109 | } |
---|
110 | } |
---|
111 | } |
---|
112 | //compute the appropriate number |
---|
113 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
114 | size_t sum = 0; |
---|
115 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
116 | { |
---|
117 | sum += intervals[i]; |
---|
118 | if(sum>targetCount) |
---|
119 | break; |
---|
120 | } |
---|
121 | if(i>=confparams_cpr->maxRangeRadius) |
---|
122 | i = confparams_cpr->maxRangeRadius-1; |
---|
123 | unsigned int accIntervals = 2*(i+1); |
---|
124 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
125 | |
---|
126 | if(powerOf2<32) |
---|
127 | powerOf2 = 32; |
---|
128 | |
---|
129 | // struct timeval costStart, costEnd; |
---|
130 | // double cost_est = 0; |
---|
131 | // |
---|
132 | // gettimeofday(&costStart, NULL); |
---|
133 | // |
---|
134 | // //compute estimate of bit-rate and distortion |
---|
135 | // double est_br = 0; |
---|
136 | // double est_psnr = 0; |
---|
137 | // double c1 = log2(targetCount)+1; |
---|
138 | // double c2 = -20.0*log10(realPrecision) + 20.0*log10(max-min) + 10.0*log10(3); |
---|
139 | // |
---|
140 | // for (i = 0; i < powerOf2/2; i++) |
---|
141 | // { |
---|
142 | // int count = intervals[i]; |
---|
143 | // if (count != 0) |
---|
144 | // est_br += count*log2(count); |
---|
145 | // est_psnr += count; |
---|
146 | // } |
---|
147 | // |
---|
148 | // //compute estimate of bit-rate |
---|
149 | // est_br -= c1*est_psnr; |
---|
150 | // est_br /= totalSampleSize; |
---|
151 | // est_br = -est_br; |
---|
152 | // |
---|
153 | // //compute estimate of psnr |
---|
154 | // est_psnr /= totalSampleSize; |
---|
155 | // printf ("sum of P(i) = %lf\n", est_psnr); |
---|
156 | // est_psnr = -10.0*log10(est_psnr); |
---|
157 | // est_psnr += c2; |
---|
158 | // |
---|
159 | // printf ("estimate bitrate = %.2f\n", est_br); |
---|
160 | // printf ("estimate psnr = %.2f\n",est_psnr); |
---|
161 | // |
---|
162 | // gettimeofday(&costEnd, NULL); |
---|
163 | // cost_est = ((costEnd.tv_sec*1000000+costEnd.tv_usec)-(costStart.tv_sec*1000000+costStart.tv_usec))/1000000.0; |
---|
164 | // |
---|
165 | // printf ("analysis time = %f\n", cost_est); |
---|
166 | |
---|
167 | free(intervals); |
---|
168 | //printf("confparams_cpr->maxRangeRadius = %d, accIntervals=%d, powerOf2=%d\n", confparams_cpr->maxRangeRadius, accIntervals, powerOf2); |
---|
169 | return powerOf2; |
---|
170 | } |
---|
171 | |
---|
172 | unsigned int optimize_intervals_float_3D(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision) |
---|
173 | { |
---|
174 | size_t i,j,k, index; |
---|
175 | size_t radiusIndex; |
---|
176 | size_t r23=r2*r3; |
---|
177 | float pred_value = 0, pred_err; |
---|
178 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
179 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
180 | size_t totalSampleSize = (r1-1)*(r2-1)*(r3-1)/confparams_cpr->sampleDistance; |
---|
181 | |
---|
182 | //float max = oriData[0]; |
---|
183 | //float min = oriData[0]; |
---|
184 | |
---|
185 | for(i=1;i<r1;i++) |
---|
186 | { |
---|
187 | for(j=1;j<r2;j++) |
---|
188 | { |
---|
189 | for(k=1;k<r3;k++) |
---|
190 | { |
---|
191 | if((i+j+k)%confparams_cpr->sampleDistance==0) |
---|
192 | { |
---|
193 | index = i*r23+j*r3+k; |
---|
194 | pred_value = oriData[index-1] + oriData[index-r3] + oriData[index-r23] |
---|
195 | - oriData[index-1-r23] - oriData[index-r3-1] - oriData[index-r3-r23] + oriData[index-r3-r23-1]; |
---|
196 | pred_err = fabs(pred_value - oriData[index]); |
---|
197 | radiusIndex = (pred_err/realPrecision+1)/2; |
---|
198 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
199 | { |
---|
200 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
201 | //printf("radiusIndex=%d\n", radiusIndex); |
---|
202 | } |
---|
203 | intervals[radiusIndex]++; |
---|
204 | |
---|
205 | // if (max < oriData[index]) max = oriData[index]; |
---|
206 | // if (min > oriData[index]) min = oriData[index]; |
---|
207 | } |
---|
208 | } |
---|
209 | } |
---|
210 | } |
---|
211 | //compute the appropriate number |
---|
212 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
213 | size_t sum = 0; |
---|
214 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
215 | { |
---|
216 | sum += intervals[i]; |
---|
217 | if(sum>targetCount) |
---|
218 | break; |
---|
219 | } |
---|
220 | if(i>=confparams_cpr->maxRangeRadius) |
---|
221 | i = confparams_cpr->maxRangeRadius-1; |
---|
222 | unsigned int accIntervals = 2*(i+1); |
---|
223 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
224 | |
---|
225 | if(powerOf2<32) |
---|
226 | powerOf2 = 32; |
---|
227 | |
---|
228 | // struct timeval costStart, costEnd; |
---|
229 | // double cost_est = 0; |
---|
230 | // |
---|
231 | // gettimeofday(&costStart, NULL); |
---|
232 | // |
---|
233 | // //compute estimate of bit-rate and distortion |
---|
234 | // double est_br = 0; |
---|
235 | // double est_psnr = 0; |
---|
236 | // double c1 = log2(targetCount)+1; |
---|
237 | // double c2 = -20.0*log10(realPrecision) + 20.0*log10(max-min) + 10.0*log10(3); |
---|
238 | // |
---|
239 | // for (i = 0; i < powerOf2/2; i++) |
---|
240 | // { |
---|
241 | // int count = intervals[i]; |
---|
242 | // if (count != 0) |
---|
243 | // est_br += count*log2(count); |
---|
244 | // est_psnr += count; |
---|
245 | // } |
---|
246 | // |
---|
247 | // //compute estimate of bit-rate |
---|
248 | // est_br -= c1*est_psnr; |
---|
249 | // est_br /= totalSampleSize; |
---|
250 | // est_br = -est_br; |
---|
251 | // |
---|
252 | // //compute estimate of psnr |
---|
253 | // est_psnr /= totalSampleSize; |
---|
254 | // printf ("sum of P(i) = %lf\n", est_psnr); |
---|
255 | // est_psnr = -10.0*log10(est_psnr); |
---|
256 | // est_psnr += c2; |
---|
257 | // |
---|
258 | // printf ("estimate bitrate = %.2f\n", est_br); |
---|
259 | // printf ("estimate psnr = %.2f\n",est_psnr); |
---|
260 | // |
---|
261 | // gettimeofday(&costEnd, NULL); |
---|
262 | // cost_est = ((costEnd.tv_sec*1000000+costEnd.tv_usec)-(costStart.tv_sec*1000000+costStart.tv_usec))/1000000.0; |
---|
263 | // |
---|
264 | // printf ("analysis time = %f\n", cost_est); |
---|
265 | |
---|
266 | free(intervals); |
---|
267 | //printf("targetCount=%d, sum=%d, totalSampleSize=%d, ratio=%f, accIntervals=%d, powerOf2=%d\n", targetCount, sum, totalSampleSize, (double)sum/(double)totalSampleSize, accIntervals, powerOf2); |
---|
268 | return powerOf2; |
---|
269 | } |
---|
270 | |
---|
271 | |
---|
272 | unsigned int optimize_intervals_float_4D(float *oriData, size_t r1, size_t r2, size_t r3, size_t r4, double realPrecision) |
---|
273 | { |
---|
274 | size_t i,j,k,l, index; |
---|
275 | size_t radiusIndex; |
---|
276 | size_t r234=r2*r3*r4; |
---|
277 | size_t r34=r3*r4; |
---|
278 | float pred_value = 0, pred_err; |
---|
279 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
280 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
281 | size_t totalSampleSize = (r1-1)*(r2-1)*(r3-1)*(r4-1)/confparams_cpr->sampleDistance; |
---|
282 | for(i=1;i<r1;i++) |
---|
283 | { |
---|
284 | for(j=1;j<r2;j++) |
---|
285 | { |
---|
286 | for(k=1;k<r3;k++) |
---|
287 | { |
---|
288 | for (l=1;l<r4;l++) |
---|
289 | { |
---|
290 | if((i+j+k+l)%confparams_cpr->sampleDistance==0) |
---|
291 | { |
---|
292 | index = i*r234+j*r34+k*r4+l; |
---|
293 | pred_value = oriData[index-1] + oriData[index-r3] + oriData[index-r34] |
---|
294 | - oriData[index-1-r34] - oriData[index-r4-1] - oriData[index-r4-r34] + oriData[index-r4-r34-1]; |
---|
295 | pred_err = fabs(pred_value - oriData[index]); |
---|
296 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
297 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
298 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
299 | intervals[radiusIndex]++; |
---|
300 | } |
---|
301 | } |
---|
302 | } |
---|
303 | } |
---|
304 | } |
---|
305 | //compute the appropriate number |
---|
306 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
307 | size_t sum = 0; |
---|
308 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
309 | { |
---|
310 | sum += intervals[i]; |
---|
311 | if(sum>targetCount) |
---|
312 | break; |
---|
313 | } |
---|
314 | if(i>=confparams_cpr->maxRangeRadius) |
---|
315 | i = confparams_cpr->maxRangeRadius-1; |
---|
316 | |
---|
317 | unsigned int accIntervals = 2*(i+1); |
---|
318 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
319 | |
---|
320 | if(powerOf2<32) |
---|
321 | powerOf2 = 32; |
---|
322 | |
---|
323 | free(intervals); |
---|
324 | return powerOf2; |
---|
325 | } |
---|
326 | |
---|
327 | TightDataPointStorageF* SZ_compress_float_1D_MDQ(float *oriData, |
---|
328 | size_t dataLength, double realPrecision, float valueRangeSize, float medianValue_f) |
---|
329 | { |
---|
330 | #ifdef HAVE_TIMECMPR |
---|
331 | float* decData = NULL; |
---|
332 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
333 | decData = (float*)(multisteps->hist_data); |
---|
334 | #endif |
---|
335 | |
---|
336 | unsigned int quantization_intervals; |
---|
337 | if(exe_params->optQuantMode==1) |
---|
338 | quantization_intervals = optimize_intervals_float_1D_opt(oriData, dataLength, realPrecision); |
---|
339 | else |
---|
340 | quantization_intervals = exe_params->intvCapacity; |
---|
341 | updateQuantizationInfo(quantization_intervals); |
---|
342 | |
---|
343 | size_t i; |
---|
344 | int reqLength; |
---|
345 | float medianValue = medianValue_f; |
---|
346 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
347 | |
---|
348 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
349 | |
---|
350 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
351 | |
---|
352 | float* spaceFillingValue = oriData; // |
---|
353 | |
---|
354 | DynamicIntArray *exactLeadNumArray; |
---|
355 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
356 | |
---|
357 | DynamicByteArray *exactMidByteArray; |
---|
358 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
359 | |
---|
360 | DynamicIntArray *resiBitArray; |
---|
361 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
362 | |
---|
363 | unsigned char preDataBytes[4]; |
---|
364 | intToBytes_bigEndian(preDataBytes, 0); |
---|
365 | |
---|
366 | int reqBytesLength = reqLength/8; |
---|
367 | int resiBitsLength = reqLength%8; |
---|
368 | float last3CmprsData[3] = {0}; |
---|
369 | |
---|
370 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
371 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
372 | |
---|
373 | //add the first data |
---|
374 | type[0] = 0; |
---|
375 | compressSingleFloatValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
376 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
377 | memcpy(preDataBytes,vce->curBytes,4); |
---|
378 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
379 | listAdd_float(last3CmprsData, vce->data); |
---|
380 | #ifdef HAVE_TIMECMPR |
---|
381 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
382 | decData[0] = vce->data; |
---|
383 | #endif |
---|
384 | |
---|
385 | //add the second data |
---|
386 | type[1] = 0; |
---|
387 | compressSingleFloatValue(vce, spaceFillingValue[1], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
388 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
389 | memcpy(preDataBytes,vce->curBytes,4); |
---|
390 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
391 | listAdd_float(last3CmprsData, vce->data); |
---|
392 | #ifdef HAVE_TIMECMPR |
---|
393 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
394 | decData[1] = vce->data; |
---|
395 | #endif |
---|
396 | int state; |
---|
397 | double checkRadius; |
---|
398 | float curData; |
---|
399 | float pred; |
---|
400 | float predAbsErr; |
---|
401 | checkRadius = (exe_params->intvCapacity-1)*realPrecision; |
---|
402 | double interval = 2*realPrecision; |
---|
403 | |
---|
404 | for(i=2;i<dataLength;i++) |
---|
405 | { |
---|
406 | curData = spaceFillingValue[i]; |
---|
407 | //pred = 2*last3CmprsData[0] - last3CmprsData[1]; |
---|
408 | pred = last3CmprsData[0]; |
---|
409 | predAbsErr = fabs(curData - pred); |
---|
410 | if(predAbsErr<checkRadius) |
---|
411 | { |
---|
412 | state = (predAbsErr/realPrecision+1)/2; |
---|
413 | if(curData>=pred) |
---|
414 | { |
---|
415 | type[i] = exe_params->intvRadius+state; |
---|
416 | pred = pred + state*interval; |
---|
417 | } |
---|
418 | else //curData<pred |
---|
419 | { |
---|
420 | type[i] = exe_params->intvRadius-state; |
---|
421 | pred = pred - state*interval; |
---|
422 | } |
---|
423 | |
---|
424 | //double-check the prediction error in case of machine-epsilon impact |
---|
425 | if(fabs(curData-pred)>realPrecision) |
---|
426 | { |
---|
427 | type[i] = 0; |
---|
428 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
429 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
430 | memcpy(preDataBytes,vce->curBytes,4); |
---|
431 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
432 | |
---|
433 | listAdd_float(last3CmprsData, vce->data); |
---|
434 | #ifdef HAVE_TIMECMPR |
---|
435 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
436 | decData[i] = vce->data; |
---|
437 | #endif |
---|
438 | } |
---|
439 | else |
---|
440 | { |
---|
441 | listAdd_float(last3CmprsData, pred); |
---|
442 | #ifdef HAVE_TIMECMPR |
---|
443 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
444 | decData[i] = pred; |
---|
445 | #endif |
---|
446 | } |
---|
447 | continue; |
---|
448 | } |
---|
449 | |
---|
450 | //unpredictable data processing |
---|
451 | type[i] = 0; |
---|
452 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
453 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
454 | memcpy(preDataBytes,vce->curBytes,4); |
---|
455 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
456 | |
---|
457 | listAdd_float(last3CmprsData, vce->data); |
---|
458 | #ifdef HAVE_TIMECMPR |
---|
459 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
460 | decData[i] = vce->data; |
---|
461 | #endif |
---|
462 | |
---|
463 | }//end of for |
---|
464 | |
---|
465 | // char* expSegmentsInBytes; |
---|
466 | // int expSegmentsInBytes_size = convertESCToBytes(esc, &expSegmentsInBytes); |
---|
467 | size_t exactDataNum = exactLeadNumArray->size; |
---|
468 | |
---|
469 | TightDataPointStorageF* tdps; |
---|
470 | |
---|
471 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
472 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
473 | exactLeadNumArray->array, |
---|
474 | resiBitArray->array, resiBitArray->size, |
---|
475 | resiBitsLength, |
---|
476 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
477 | |
---|
478 | //sdi:Debug |
---|
479 | /* int sum =0; |
---|
480 | for(i=0;i<dataLength;i++) |
---|
481 | if(type[i]==0) sum++; |
---|
482 | printf("opt_quantizations=%d, exactDataNum=%d, sum=%d\n",quantization_intervals, exactDataNum, sum);*/ |
---|
483 | |
---|
484 | //free memory |
---|
485 | free_DIA(exactLeadNumArray); |
---|
486 | free_DIA(resiBitArray); |
---|
487 | free(type); |
---|
488 | free(vce); |
---|
489 | free(lce); |
---|
490 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
491 | |
---|
492 | return tdps; |
---|
493 | } |
---|
494 | |
---|
495 | void SZ_compress_args_float_StoreOriData(float* oriData, size_t dataLength, TightDataPointStorageF* tdps, |
---|
496 | unsigned char** newByteData, size_t *outSize) |
---|
497 | { |
---|
498 | int floatSize=sizeof(float); |
---|
499 | size_t k = 0, i; |
---|
500 | tdps->isLossless = 1; |
---|
501 | size_t totalByteLength = 3 + MetaDataByteLength + exe_params->SZ_SIZE_TYPE + 1 + floatSize*dataLength; |
---|
502 | *newByteData = (unsigned char*)malloc(totalByteLength); |
---|
503 | |
---|
504 | unsigned char dsLengthBytes[8]; |
---|
505 | for (i = 0; i < 3; i++)//3 |
---|
506 | (*newByteData)[k++] = versionNumber[i]; |
---|
507 | |
---|
508 | if(exe_params->SZ_SIZE_TYPE==4)//1 |
---|
509 | (*newByteData)[k++] = 16; //00010000 |
---|
510 | else |
---|
511 | (*newByteData)[k++] = 80; //01010000: 01000000 indicates the SZ_SIZE_TYPE=8 |
---|
512 | |
---|
513 | convertSZParamsToBytes(confparams_cpr, &((*newByteData)[k])); |
---|
514 | k = k + MetaDataByteLength; |
---|
515 | |
---|
516 | sizeToBytes(dsLengthBytes,dataLength); //SZ_SIZE_TYPE: 4 or 8 |
---|
517 | for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++) |
---|
518 | (*newByteData)[k++] = dsLengthBytes[i]; |
---|
519 | |
---|
520 | if(sysEndianType==BIG_ENDIAN_SYSTEM) |
---|
521 | memcpy((*newByteData)+4+MetaDataByteLength+exe_params->SZ_SIZE_TYPE, oriData, dataLength*floatSize); |
---|
522 | else |
---|
523 | { |
---|
524 | unsigned char* p = (*newByteData)+4+MetaDataByteLength+exe_params->SZ_SIZE_TYPE; |
---|
525 | for(i=0;i<dataLength;i++,p+=floatSize) |
---|
526 | floatToBytes(p, oriData[i]); |
---|
527 | } |
---|
528 | *outSize = totalByteLength; |
---|
529 | } |
---|
530 | |
---|
531 | char SZ_compress_args_float_NoCkRngeNoGzip_1D(unsigned char** newByteData, float *oriData, |
---|
532 | size_t dataLength, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f) |
---|
533 | { |
---|
534 | char compressionType = 0; |
---|
535 | TightDataPointStorageF* tdps = NULL; |
---|
536 | |
---|
537 | #ifdef HAVE_TIMECMPR |
---|
538 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
539 | { |
---|
540 | int timestep = sz_tsc->currentStep; |
---|
541 | if(timestep % confparams_cpr->snapshotCmprStep != 0) |
---|
542 | { |
---|
543 | tdps = SZ_compress_float_1D_MDQ_ts(oriData, dataLength, multisteps, realPrecision, valueRangeSize, medianValue_f); |
---|
544 | compressionType = 1; //time-series based compression |
---|
545 | } |
---|
546 | else |
---|
547 | { |
---|
548 | tdps = SZ_compress_float_1D_MDQ(oriData, dataLength, realPrecision, valueRangeSize, medianValue_f); |
---|
549 | compressionType = 0; //snapshot-based compression |
---|
550 | multisteps->lastSnapshotStep = timestep; |
---|
551 | } |
---|
552 | } |
---|
553 | else |
---|
554 | #endif |
---|
555 | tdps = SZ_compress_float_1D_MDQ(oriData, dataLength, realPrecision, valueRangeSize, medianValue_f); |
---|
556 | |
---|
557 | convertTDPStoFlatBytes_float(tdps, newByteData, outSize); |
---|
558 | |
---|
559 | if(*outSize>dataLength*sizeof(float)) |
---|
560 | SZ_compress_args_float_StoreOriData(oriData, dataLength+2, tdps, newByteData, outSize); |
---|
561 | |
---|
562 | free_TightDataPointStorageF(tdps); |
---|
563 | return compressionType; |
---|
564 | } |
---|
565 | |
---|
566 | TightDataPointStorageF* SZ_compress_float_2D_MDQ(float *oriData, size_t r1, size_t r2, double realPrecision, float valueRangeSize, float medianValue_f) |
---|
567 | { |
---|
568 | #ifdef HAVE_TIMECMPR |
---|
569 | float* decData = NULL; |
---|
570 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
571 | decData = (float*)(multisteps->hist_data); |
---|
572 | #endif |
---|
573 | |
---|
574 | unsigned int quantization_intervals; |
---|
575 | if(exe_params->optQuantMode==1) |
---|
576 | { |
---|
577 | quantization_intervals = optimize_intervals_float_2D_opt(oriData, r1, r2, realPrecision); |
---|
578 | updateQuantizationInfo(quantization_intervals); |
---|
579 | } |
---|
580 | else |
---|
581 | quantization_intervals = exe_params->intvCapacity; |
---|
582 | size_t i,j; |
---|
583 | int reqLength; |
---|
584 | float pred1D, pred2D; |
---|
585 | float diff = 0.0; |
---|
586 | double itvNum = 0; |
---|
587 | float *P0, *P1; |
---|
588 | |
---|
589 | size_t dataLength = r1*r2; |
---|
590 | |
---|
591 | P0 = (float*)malloc(r2*sizeof(float)); |
---|
592 | memset(P0, 0, r2*sizeof(float)); |
---|
593 | P1 = (float*)malloc(r2*sizeof(float)); |
---|
594 | memset(P1, 0, r2*sizeof(float)); |
---|
595 | |
---|
596 | float medianValue = medianValue_f; |
---|
597 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
598 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
599 | |
---|
600 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
601 | //type[dataLength]=0; |
---|
602 | |
---|
603 | float* spaceFillingValue = oriData; // |
---|
604 | |
---|
605 | DynamicIntArray *exactLeadNumArray; |
---|
606 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
607 | |
---|
608 | DynamicByteArray *exactMidByteArray; |
---|
609 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
610 | |
---|
611 | DynamicIntArray *resiBitArray; |
---|
612 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
613 | |
---|
614 | type[0] = 0; |
---|
615 | unsigned char preDataBytes[4]; |
---|
616 | intToBytes_bigEndian(preDataBytes, 0); |
---|
617 | |
---|
618 | int reqBytesLength = reqLength/8; |
---|
619 | int resiBitsLength = reqLength%8; |
---|
620 | |
---|
621 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
622 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
623 | |
---|
624 | /* Process Row-0 data 0*/ |
---|
625 | type[0] = 0; |
---|
626 | compressSingleFloatValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
627 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
628 | memcpy(preDataBytes,vce->curBytes,4); |
---|
629 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
630 | P1[0] = vce->data; |
---|
631 | #ifdef HAVE_TIMECMPR |
---|
632 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
633 | decData[0] = vce->data; |
---|
634 | #endif |
---|
635 | |
---|
636 | float curData; |
---|
637 | |
---|
638 | /* Process Row-0 data 1*/ |
---|
639 | pred1D = P1[0]; |
---|
640 | curData = spaceFillingValue[1]; |
---|
641 | diff = curData - pred1D; |
---|
642 | |
---|
643 | itvNum = fabs(diff)/realPrecision + 1; |
---|
644 | |
---|
645 | if (itvNum < exe_params->intvCapacity) |
---|
646 | { |
---|
647 | if (diff < 0) itvNum = -itvNum; |
---|
648 | type[1] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
649 | P1[1] = pred1D + 2 * (type[1] - exe_params->intvRadius) * realPrecision; |
---|
650 | |
---|
651 | //ganrantee comporession error against the case of machine-epsilon |
---|
652 | if(fabs(spaceFillingValue[1]-P1[1])>realPrecision) |
---|
653 | { |
---|
654 | type[1] = 0; |
---|
655 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
656 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
657 | memcpy(preDataBytes,vce->curBytes,4); |
---|
658 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
659 | |
---|
660 | P1[1] = vce->data; |
---|
661 | } |
---|
662 | } |
---|
663 | else |
---|
664 | { |
---|
665 | type[1] = 0; |
---|
666 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
667 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
668 | memcpy(preDataBytes,vce->curBytes,4); |
---|
669 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
670 | P1[1] = vce->data; |
---|
671 | } |
---|
672 | #ifdef HAVE_TIMECMPR |
---|
673 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
674 | decData[1] = P1[1]; |
---|
675 | #endif |
---|
676 | |
---|
677 | /* Process Row-0 data 2 --> data r2-1 */ |
---|
678 | for (j = 2; j < r2; j++) |
---|
679 | { |
---|
680 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
681 | curData = spaceFillingValue[j]; |
---|
682 | diff = curData - pred1D; |
---|
683 | |
---|
684 | itvNum = fabs(diff)/realPrecision + 1; |
---|
685 | |
---|
686 | if (itvNum < exe_params->intvCapacity) |
---|
687 | { |
---|
688 | if (diff < 0) itvNum = -itvNum; |
---|
689 | type[j] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
690 | P1[j] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
691 | |
---|
692 | //ganrantee comporession error against the case of machine-epsilon |
---|
693 | if(fabs(curData-P1[j])>realPrecision) |
---|
694 | { |
---|
695 | type[j] = 0; |
---|
696 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
697 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
698 | memcpy(preDataBytes,vce->curBytes,4); |
---|
699 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
700 | |
---|
701 | P1[j] = vce->data; |
---|
702 | } |
---|
703 | } |
---|
704 | else |
---|
705 | { |
---|
706 | type[j] = 0; |
---|
707 | compressSingleFloatValue(vce,curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
708 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
709 | memcpy(preDataBytes,vce->curBytes,4); |
---|
710 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
711 | P1[j] = vce->data; |
---|
712 | } |
---|
713 | #ifdef HAVE_TIMECMPR |
---|
714 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
715 | decData[j] = P1[j]; |
---|
716 | #endif |
---|
717 | } |
---|
718 | |
---|
719 | /* Process Row-1 --> Row-r1-1 */ |
---|
720 | size_t index; |
---|
721 | for (i = 1; i < r1; i++) |
---|
722 | { |
---|
723 | /* Process row-i data 0 */ |
---|
724 | index = i*r2; |
---|
725 | pred1D = P1[0]; |
---|
726 | curData = spaceFillingValue[index]; |
---|
727 | diff = curData - pred1D; |
---|
728 | |
---|
729 | itvNum = fabs(diff)/realPrecision + 1; |
---|
730 | |
---|
731 | if (itvNum < exe_params->intvCapacity) |
---|
732 | { |
---|
733 | if (diff < 0) itvNum = -itvNum; |
---|
734 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
735 | P0[0] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
736 | |
---|
737 | //ganrantee comporession error against the case of machine-epsilon |
---|
738 | if(fabs(curData-P0[0])>realPrecision) |
---|
739 | { |
---|
740 | type[index] = 0; |
---|
741 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
742 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
743 | memcpy(preDataBytes,vce->curBytes,4); |
---|
744 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
745 | |
---|
746 | P0[0] = vce->data; |
---|
747 | } |
---|
748 | } |
---|
749 | else |
---|
750 | { |
---|
751 | type[index] = 0; |
---|
752 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
753 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
754 | memcpy(preDataBytes,vce->curBytes,4); |
---|
755 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
756 | P0[0] = vce->data; |
---|
757 | } |
---|
758 | #ifdef HAVE_TIMECMPR |
---|
759 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
760 | decData[index] = P0[0]; |
---|
761 | #endif |
---|
762 | |
---|
763 | /* Process row-i data 1 --> r2-1*/ |
---|
764 | for (j = 1; j < r2; j++) |
---|
765 | { |
---|
766 | index = i*r2+j; |
---|
767 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
768 | |
---|
769 | curData = spaceFillingValue[index]; |
---|
770 | diff = curData - pred2D; |
---|
771 | |
---|
772 | itvNum = fabs(diff)/realPrecision + 1; |
---|
773 | |
---|
774 | if (itvNum < exe_params->intvCapacity) |
---|
775 | { |
---|
776 | if (diff < 0) itvNum = -itvNum; |
---|
777 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
778 | P0[j] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
779 | |
---|
780 | //ganrantee comporession error against the case of machine-epsilon |
---|
781 | if(fabs(curData-P0[j])>realPrecision) |
---|
782 | { |
---|
783 | type[index] = 0; |
---|
784 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
785 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
786 | memcpy(preDataBytes,vce->curBytes,4); |
---|
787 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
788 | |
---|
789 | P0[j] = vce->data; |
---|
790 | } |
---|
791 | } |
---|
792 | else |
---|
793 | { |
---|
794 | type[index] = 0; |
---|
795 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
796 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
797 | memcpy(preDataBytes,vce->curBytes,4); |
---|
798 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
799 | P0[j] = vce->data; |
---|
800 | } |
---|
801 | #ifdef HAVE_TIMECMPR |
---|
802 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
803 | decData[index] = P0[j]; |
---|
804 | #endif |
---|
805 | } |
---|
806 | |
---|
807 | float *Pt; |
---|
808 | Pt = P1; |
---|
809 | P1 = P0; |
---|
810 | P0 = Pt; |
---|
811 | } |
---|
812 | |
---|
813 | if(r2!=1) |
---|
814 | free(P0); |
---|
815 | free(P1); |
---|
816 | size_t exactDataNum = exactLeadNumArray->size; |
---|
817 | |
---|
818 | TightDataPointStorageF* tdps; |
---|
819 | |
---|
820 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
821 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
822 | exactLeadNumArray->array, |
---|
823 | resiBitArray->array, resiBitArray->size, |
---|
824 | resiBitsLength, |
---|
825 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
826 | |
---|
827 | // printf("exactDataNum=%d, expSegmentsInBytes_size=%d, exactMidByteArray->size=%d\n", |
---|
828 | // exactDataNum, expSegmentsInBytes_size, exactMidByteArray->size); |
---|
829 | |
---|
830 | // for(i = 3800;i<3844;i++) |
---|
831 | // printf("exactLeadNumArray->array[%d]=%d\n",i,exactLeadNumArray->array[i]); |
---|
832 | |
---|
833 | //free memory |
---|
834 | free_DIA(exactLeadNumArray); |
---|
835 | free_DIA(resiBitArray); |
---|
836 | free(type); |
---|
837 | free(vce); |
---|
838 | free(lce); |
---|
839 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
840 | |
---|
841 | return tdps; |
---|
842 | } |
---|
843 | |
---|
844 | /** |
---|
845 | * |
---|
846 | * Note: @r1 is high dimension |
---|
847 | * @r2 is low dimension |
---|
848 | * */ |
---|
849 | char SZ_compress_args_float_NoCkRngeNoGzip_2D(unsigned char** newByteData, float *oriData, size_t r1, size_t r2, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f) |
---|
850 | { |
---|
851 | size_t dataLength = r1*r2; |
---|
852 | char compressionType = 0; |
---|
853 | TightDataPointStorageF* tdps = NULL; |
---|
854 | |
---|
855 | #ifdef HAVE_TIMECMPR |
---|
856 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
857 | { |
---|
858 | int timestep = sz_tsc->currentStep; |
---|
859 | if(timestep % confparams_cpr->snapshotCmprStep != 0) |
---|
860 | { |
---|
861 | tdps = SZ_compress_float_1D_MDQ_ts(oriData, dataLength, multisteps, realPrecision, valueRangeSize, medianValue_f); |
---|
862 | compressionType = 1; //time-series based compression |
---|
863 | } |
---|
864 | else |
---|
865 | { |
---|
866 | tdps = SZ_compress_float_2D_MDQ(oriData, r1, r2, realPrecision, valueRangeSize, medianValue_f); |
---|
867 | compressionType = 0; //snapshot-based compression |
---|
868 | multisteps->lastSnapshotStep = timestep; |
---|
869 | } |
---|
870 | } |
---|
871 | else |
---|
872 | #endif |
---|
873 | tdps = SZ_compress_float_2D_MDQ(oriData, r1, r2, realPrecision, valueRangeSize, medianValue_f); |
---|
874 | |
---|
875 | convertTDPStoFlatBytes_float(tdps, newByteData, outSize); |
---|
876 | |
---|
877 | if(*outSize>dataLength*sizeof(float)) |
---|
878 | SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
879 | |
---|
880 | free_TightDataPointStorageF(tdps); |
---|
881 | |
---|
882 | return compressionType; |
---|
883 | } |
---|
884 | |
---|
885 | TightDataPointStorageF* SZ_compress_float_3D_MDQ(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, float valueRangeSize, float medianValue_f) |
---|
886 | { |
---|
887 | #ifdef HAVE_TIMECMPR |
---|
888 | float* decData = NULL; |
---|
889 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
890 | decData = (float*)(multisteps->hist_data); |
---|
891 | #endif |
---|
892 | |
---|
893 | unsigned int quantization_intervals; |
---|
894 | if(exe_params->optQuantMode==1) |
---|
895 | { |
---|
896 | quantization_intervals = optimize_intervals_float_3D_opt(oriData, r1, r2, r3, realPrecision); |
---|
897 | updateQuantizationInfo(quantization_intervals); |
---|
898 | } |
---|
899 | else |
---|
900 | quantization_intervals = exe_params->intvCapacity; |
---|
901 | size_t i,j,k; |
---|
902 | int reqLength; |
---|
903 | float pred1D, pred2D, pred3D; |
---|
904 | float diff = 0.0; |
---|
905 | double itvNum = 0; |
---|
906 | float *P0, *P1; |
---|
907 | |
---|
908 | size_t dataLength = r1*r2*r3; |
---|
909 | size_t r23 = r2*r3; |
---|
910 | P0 = (float*)malloc(r23*sizeof(float)); |
---|
911 | P1 = (float*)malloc(r23*sizeof(float)); |
---|
912 | |
---|
913 | float medianValue = medianValue_f; |
---|
914 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
915 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
916 | |
---|
917 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
918 | |
---|
919 | float* spaceFillingValue = oriData; // |
---|
920 | |
---|
921 | DynamicIntArray *exactLeadNumArray; |
---|
922 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
923 | |
---|
924 | DynamicByteArray *exactMidByteArray; |
---|
925 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
926 | |
---|
927 | DynamicIntArray *resiBitArray; |
---|
928 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
929 | |
---|
930 | unsigned char preDataBytes[4]; |
---|
931 | intToBytes_bigEndian(preDataBytes, 0); |
---|
932 | |
---|
933 | int reqBytesLength = reqLength/8; |
---|
934 | int resiBitsLength = reqLength%8; |
---|
935 | |
---|
936 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
937 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
938 | |
---|
939 | |
---|
940 | /////////////////////////// Process layer-0 /////////////////////////// |
---|
941 | /* Process Row-0 data 0*/ |
---|
942 | type[0] = 0; |
---|
943 | compressSingleFloatValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
944 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
945 | memcpy(preDataBytes,vce->curBytes,4); |
---|
946 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
947 | P1[0] = vce->data; |
---|
948 | #ifdef HAVE_TIMECMPR |
---|
949 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
950 | decData[0] = P1[0]; |
---|
951 | #endif |
---|
952 | |
---|
953 | float curData; |
---|
954 | |
---|
955 | /* Process Row-0 data 1*/ |
---|
956 | pred1D = P1[0]; |
---|
957 | curData = spaceFillingValue[1]; |
---|
958 | diff = curData - pred1D; |
---|
959 | |
---|
960 | itvNum = fabs(diff)/realPrecision + 1; |
---|
961 | |
---|
962 | if (itvNum < exe_params->intvCapacity) |
---|
963 | { |
---|
964 | if (diff < 0) itvNum = -itvNum; |
---|
965 | type[1] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
966 | P1[1] = pred1D + 2 * (type[1] - exe_params->intvRadius) * realPrecision; |
---|
967 | |
---|
968 | //ganrantee comporession error against the case of machine-epsilon |
---|
969 | if(fabs(curData-P1[1])>realPrecision) |
---|
970 | { |
---|
971 | type[1] = 0; |
---|
972 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
973 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
974 | memcpy(preDataBytes,vce->curBytes,4); |
---|
975 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
976 | |
---|
977 | P1[1] = vce->data; |
---|
978 | } |
---|
979 | } |
---|
980 | else |
---|
981 | { |
---|
982 | type[1] = 0; |
---|
983 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
984 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
985 | memcpy(preDataBytes,vce->curBytes,4); |
---|
986 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
987 | P1[1] = vce->data; |
---|
988 | } |
---|
989 | #ifdef HAVE_TIMECMPR |
---|
990 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
991 | decData[1] = P1[1]; |
---|
992 | #endif |
---|
993 | |
---|
994 | /* Process Row-0 data 2 --> data r3-1 */ |
---|
995 | for (j = 2; j < r3; j++) |
---|
996 | { |
---|
997 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
998 | curData = spaceFillingValue[j]; |
---|
999 | diff = curData - pred1D; |
---|
1000 | |
---|
1001 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1002 | |
---|
1003 | if (itvNum < exe_params->intvCapacity) |
---|
1004 | { |
---|
1005 | if (diff < 0) itvNum = -itvNum; |
---|
1006 | type[j] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1007 | P1[j] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
1008 | |
---|
1009 | //ganrantee comporession error against the case of machine-epsilon |
---|
1010 | if(fabs(curData-P1[j])>realPrecision) |
---|
1011 | { |
---|
1012 | type[j] = 0; |
---|
1013 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1014 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1015 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1016 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1017 | |
---|
1018 | P1[j] = vce->data; |
---|
1019 | } |
---|
1020 | } |
---|
1021 | else |
---|
1022 | { |
---|
1023 | type[j] = 0; |
---|
1024 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1025 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1026 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1027 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1028 | P1[j] = vce->data; |
---|
1029 | } |
---|
1030 | #ifdef HAVE_TIMECMPR |
---|
1031 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1032 | decData[j] = P1[j]; |
---|
1033 | #endif |
---|
1034 | } |
---|
1035 | |
---|
1036 | /* Process Row-1 --> Row-r2-1 */ |
---|
1037 | size_t index; |
---|
1038 | for (i = 1; i < r2; i++) |
---|
1039 | { |
---|
1040 | /* Process row-i data 0 */ |
---|
1041 | index = i*r3; |
---|
1042 | pred1D = P1[index-r3]; |
---|
1043 | curData = spaceFillingValue[index]; |
---|
1044 | diff = curData - pred1D; |
---|
1045 | |
---|
1046 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1047 | |
---|
1048 | if (itvNum < exe_params->intvCapacity) |
---|
1049 | { |
---|
1050 | if (diff < 0) itvNum = -itvNum; |
---|
1051 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1052 | P1[index] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1053 | |
---|
1054 | //ganrantee comporession error against the case of machine-epsilon |
---|
1055 | if(fabs(curData-P1[index])>realPrecision) |
---|
1056 | { |
---|
1057 | type[index] = 0; |
---|
1058 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1059 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1060 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1061 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1062 | |
---|
1063 | P1[index] = vce->data; |
---|
1064 | } |
---|
1065 | } |
---|
1066 | else |
---|
1067 | { |
---|
1068 | type[index] = 0; |
---|
1069 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1070 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1071 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1072 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1073 | P1[index] = vce->data; |
---|
1074 | } |
---|
1075 | #ifdef HAVE_TIMECMPR |
---|
1076 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1077 | decData[index] = P1[index]; |
---|
1078 | #endif |
---|
1079 | |
---|
1080 | /* Process row-i data 1 --> data r3-1*/ |
---|
1081 | for (j = 1; j < r3; j++) |
---|
1082 | { |
---|
1083 | index = i*r3+j; |
---|
1084 | pred2D = P1[index-1] + P1[index-r3] - P1[index-r3-1]; |
---|
1085 | |
---|
1086 | curData = spaceFillingValue[index]; |
---|
1087 | diff = curData - pred2D; |
---|
1088 | |
---|
1089 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1090 | |
---|
1091 | if (itvNum < exe_params->intvCapacity) |
---|
1092 | { |
---|
1093 | if (diff < 0) itvNum = -itvNum; |
---|
1094 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1095 | P1[index] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1096 | |
---|
1097 | //ganrantee comporession error against the case of machine-epsilon |
---|
1098 | if(fabs(curData-P1[index])>realPrecision) |
---|
1099 | { |
---|
1100 | type[index] = 0; |
---|
1101 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1102 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1103 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1104 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1105 | |
---|
1106 | P1[index] = vce->data; |
---|
1107 | } |
---|
1108 | } |
---|
1109 | else |
---|
1110 | { |
---|
1111 | type[index] = 0; |
---|
1112 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1113 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1114 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1115 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1116 | P1[index] = vce->data; |
---|
1117 | } |
---|
1118 | #ifdef HAVE_TIMECMPR |
---|
1119 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1120 | decData[index] = P1[index]; |
---|
1121 | #endif |
---|
1122 | } |
---|
1123 | } |
---|
1124 | |
---|
1125 | |
---|
1126 | /////////////////////////// Process layer-1 --> layer-r1-1 /////////////////////////// |
---|
1127 | |
---|
1128 | for (k = 1; k < r1; k++) |
---|
1129 | { |
---|
1130 | /* Process Row-0 data 0*/ |
---|
1131 | index = k*r23; |
---|
1132 | pred1D = P1[0]; |
---|
1133 | curData = spaceFillingValue[index]; |
---|
1134 | diff = curData - pred1D; |
---|
1135 | |
---|
1136 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1137 | |
---|
1138 | if (itvNum < exe_params->intvCapacity) |
---|
1139 | { |
---|
1140 | if (diff < 0) itvNum = -itvNum; |
---|
1141 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1142 | P0[0] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1143 | |
---|
1144 | //ganrantee comporession error against the case of machine-epsilon |
---|
1145 | if(fabs(curData-P0[0])>realPrecision) |
---|
1146 | { |
---|
1147 | type[index] = 0; |
---|
1148 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1149 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1150 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1151 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1152 | |
---|
1153 | P0[0] = vce->data; |
---|
1154 | } |
---|
1155 | } |
---|
1156 | else |
---|
1157 | { |
---|
1158 | type[index] = 0; |
---|
1159 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1160 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1161 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1162 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1163 | P0[0] = vce->data; |
---|
1164 | } |
---|
1165 | #ifdef HAVE_TIMECMPR |
---|
1166 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1167 | decData[index] = P0[0]; |
---|
1168 | #endif |
---|
1169 | |
---|
1170 | /* Process Row-0 data 1 --> data r3-1 */ |
---|
1171 | for (j = 1; j < r3; j++) |
---|
1172 | { |
---|
1173 | //index = k*r2*r3+j; |
---|
1174 | index ++; |
---|
1175 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
1176 | curData = spaceFillingValue[index]; |
---|
1177 | diff = spaceFillingValue[index] - pred2D; |
---|
1178 | |
---|
1179 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1180 | |
---|
1181 | if (itvNum < exe_params->intvCapacity) |
---|
1182 | { |
---|
1183 | if (diff < 0) itvNum = -itvNum; |
---|
1184 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1185 | P0[j] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1186 | //ganrantee comporession error against the case of machine-epsilon |
---|
1187 | if(fabs(curData-P0[j])>realPrecision) |
---|
1188 | { |
---|
1189 | type[index] = 0; |
---|
1190 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1191 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1192 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1193 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1194 | |
---|
1195 | P0[j] = vce->data; |
---|
1196 | } |
---|
1197 | } |
---|
1198 | else |
---|
1199 | { |
---|
1200 | type[index] = 0; |
---|
1201 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1202 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1203 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1204 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1205 | P0[j] = vce->data; |
---|
1206 | } |
---|
1207 | #ifdef HAVE_TIMECMPR |
---|
1208 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1209 | decData[index] = P0[j]; |
---|
1210 | #endif |
---|
1211 | } |
---|
1212 | |
---|
1213 | /* Process Row-1 --> Row-r2-1 */ |
---|
1214 | size_t index2D; |
---|
1215 | for (i = 1; i < r2; i++) |
---|
1216 | { |
---|
1217 | /* Process Row-i data 0 */ |
---|
1218 | index = k*r23 + i*r3; |
---|
1219 | index2D = i*r3; |
---|
1220 | pred2D = P0[index2D-r3] + P1[index2D] - P1[index2D-r3]; |
---|
1221 | curData = spaceFillingValue[index]; |
---|
1222 | diff = spaceFillingValue[index] - pred2D; |
---|
1223 | |
---|
1224 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1225 | |
---|
1226 | if (itvNum < exe_params->intvCapacity) |
---|
1227 | { |
---|
1228 | if (diff < 0) itvNum = -itvNum; |
---|
1229 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1230 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1231 | //ganrantee comporession error against the case of machine-epsilon |
---|
1232 | if(fabs(curData-P0[index2D])>realPrecision) |
---|
1233 | { |
---|
1234 | type[index] = 0; |
---|
1235 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1236 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1237 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1238 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1239 | |
---|
1240 | P0[index2D] = vce->data; |
---|
1241 | } |
---|
1242 | } |
---|
1243 | else |
---|
1244 | { |
---|
1245 | type[index] = 0; |
---|
1246 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1247 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1248 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1249 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1250 | P0[index2D] = vce->data; |
---|
1251 | } |
---|
1252 | #ifdef HAVE_TIMECMPR |
---|
1253 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1254 | decData[index] = P0[index2D]; |
---|
1255 | #endif |
---|
1256 | |
---|
1257 | /* Process Row-i data 1 --> data r3-1 */ |
---|
1258 | for (j = 1; j < r3; j++) |
---|
1259 | { |
---|
1260 | // if(k==63&&i==43&&j==27) |
---|
1261 | // printf("i=%d\n", i); |
---|
1262 | //index = k*r2*r3 + i*r3 + j; |
---|
1263 | index ++; |
---|
1264 | index2D = i*r3 + j; |
---|
1265 | pred3D = P0[index2D-1] + P0[index2D-r3]+ P1[index2D] - P0[index2D-r3-1] - P1[index2D-r3] - P1[index2D-1] + P1[index2D-r3-1]; |
---|
1266 | curData = spaceFillingValue[index]; |
---|
1267 | diff = curData - pred3D; |
---|
1268 | |
---|
1269 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1270 | |
---|
1271 | if (itvNum < exe_params->intvCapacity) |
---|
1272 | { |
---|
1273 | if (diff < 0) itvNum = -itvNum; |
---|
1274 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1275 | P0[index2D] = pred3D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1276 | |
---|
1277 | //ganrantee comporession error against the case of machine-epsilon |
---|
1278 | if(fabs(curData-P0[index2D])>realPrecision) |
---|
1279 | { |
---|
1280 | type[index] = 0; |
---|
1281 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1282 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1283 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1284 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1285 | |
---|
1286 | P0[index2D] = vce->data; |
---|
1287 | } |
---|
1288 | } |
---|
1289 | else |
---|
1290 | { |
---|
1291 | type[index] = 0; |
---|
1292 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1293 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1294 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1295 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1296 | P0[index2D] = vce->data; |
---|
1297 | } |
---|
1298 | #ifdef HAVE_TIMECMPR |
---|
1299 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1300 | decData[index] = P0[index2D]; |
---|
1301 | #endif |
---|
1302 | } |
---|
1303 | } |
---|
1304 | |
---|
1305 | float *Pt; |
---|
1306 | Pt = P1; |
---|
1307 | P1 = P0; |
---|
1308 | P0 = Pt; |
---|
1309 | } |
---|
1310 | if(r23!=1) |
---|
1311 | free(P0); |
---|
1312 | free(P1); |
---|
1313 | size_t exactDataNum = exactLeadNumArray->size; |
---|
1314 | |
---|
1315 | TightDataPointStorageF* tdps; |
---|
1316 | |
---|
1317 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
1318 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
1319 | exactLeadNumArray->array, |
---|
1320 | resiBitArray->array, resiBitArray->size, |
---|
1321 | resiBitsLength, |
---|
1322 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
1323 | |
---|
1324 | //sdi:Debug |
---|
1325 | /* int sum =0; |
---|
1326 | for(i=0;i<dataLength;i++) |
---|
1327 | if(type[i]==0) sum++; |
---|
1328 | printf("opt_quantizations=%d, exactDataNum=%d, sum=%d\n",quantization_intervals, exactDataNum, sum);*/ |
---|
1329 | |
---|
1330 | |
---|
1331 | // printf("exactDataNum=%d, expSegmentsInBytes_size=%d, exactMidByteArray->size=%d\n", |
---|
1332 | // exactDataNum, expSegmentsInBytes_size, exactMidByteArray->size); |
---|
1333 | |
---|
1334 | //free memory |
---|
1335 | free_DIA(exactLeadNumArray); |
---|
1336 | free_DIA(resiBitArray); |
---|
1337 | free(type); |
---|
1338 | free(vce); |
---|
1339 | free(lce); |
---|
1340 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
1341 | |
---|
1342 | return tdps; |
---|
1343 | } |
---|
1344 | |
---|
1345 | char SZ_compress_args_float_NoCkRngeNoGzip_3D(unsigned char** newByteData, float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f) |
---|
1346 | { |
---|
1347 | size_t dataLength = r1*r2*r3; |
---|
1348 | char compressionType = 0; |
---|
1349 | TightDataPointStorageF* tdps = NULL; |
---|
1350 | |
---|
1351 | #ifdef HAVE_TIMECMPR |
---|
1352 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1353 | { |
---|
1354 | int timestep = sz_tsc->currentStep; |
---|
1355 | if(timestep % confparams_cpr->snapshotCmprStep != 0) |
---|
1356 | { |
---|
1357 | tdps = SZ_compress_float_1D_MDQ_ts(oriData, dataLength, multisteps, realPrecision, valueRangeSize, medianValue_f); |
---|
1358 | compressionType = 1; //time-series based compression |
---|
1359 | } |
---|
1360 | else |
---|
1361 | { |
---|
1362 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
1363 | tdps = SZ_compress_float_3D_MDQ(oriData, r1, r2, r3, realPrecision, valueRangeSize, medianValue_f); |
---|
1364 | else |
---|
1365 | *newByteData = SZ_compress_float_3D_MDQ_nonblocked_with_blocked_regression(oriData, r1, r2, r3, realPrecision, outSize); |
---|
1366 | compressionType = 0; //snapshot-based compression |
---|
1367 | multisteps->lastSnapshotStep = timestep; |
---|
1368 | } |
---|
1369 | } |
---|
1370 | else |
---|
1371 | #endif |
---|
1372 | tdps = SZ_compress_float_3D_MDQ(oriData, r1, r2, r3, realPrecision, valueRangeSize, medianValue_f); |
---|
1373 | |
---|
1374 | if(tdps!=NULL) |
---|
1375 | { |
---|
1376 | convertTDPStoFlatBytes_float(tdps, newByteData, outSize); |
---|
1377 | if(*outSize>dataLength*sizeof(float)) |
---|
1378 | SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
1379 | free_TightDataPointStorageF(tdps); |
---|
1380 | } |
---|
1381 | |
---|
1382 | return compressionType; |
---|
1383 | } |
---|
1384 | |
---|
1385 | |
---|
1386 | TightDataPointStorageF* SZ_compress_float_4D_MDQ(float *oriData, size_t r1, size_t r2, size_t r3, size_t r4, double realPrecision, float valueRangeSize, float medianValue_f) |
---|
1387 | { |
---|
1388 | unsigned int quantization_intervals; |
---|
1389 | if(exe_params->optQuantMode==1) |
---|
1390 | { |
---|
1391 | quantization_intervals = optimize_intervals_float_4D(oriData, r1, r2, r3, r4, realPrecision); |
---|
1392 | updateQuantizationInfo(quantization_intervals); |
---|
1393 | } |
---|
1394 | else |
---|
1395 | quantization_intervals = exe_params->intvCapacity; |
---|
1396 | |
---|
1397 | size_t i,j,k; |
---|
1398 | int reqLength; |
---|
1399 | float pred1D, pred2D, pred3D; |
---|
1400 | float diff = 0.0; |
---|
1401 | double itvNum = 0; |
---|
1402 | float *P0, *P1; |
---|
1403 | |
---|
1404 | size_t dataLength = r1*r2*r3*r4; |
---|
1405 | |
---|
1406 | size_t r234 = r2*r3*r4; |
---|
1407 | size_t r34 = r3*r4; |
---|
1408 | |
---|
1409 | P0 = (float*)malloc(r34*sizeof(float)); |
---|
1410 | P1 = (float*)malloc(r34*sizeof(float)); |
---|
1411 | |
---|
1412 | float medianValue = medianValue_f; |
---|
1413 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
1414 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
1415 | |
---|
1416 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
1417 | |
---|
1418 | float* spaceFillingValue = oriData; // |
---|
1419 | |
---|
1420 | DynamicIntArray *exactLeadNumArray; |
---|
1421 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
1422 | |
---|
1423 | DynamicByteArray *exactMidByteArray; |
---|
1424 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
1425 | |
---|
1426 | DynamicIntArray *resiBitArray; |
---|
1427 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
1428 | |
---|
1429 | unsigned char preDataBytes[4]; |
---|
1430 | intToBytes_bigEndian(preDataBytes, 0); |
---|
1431 | |
---|
1432 | int reqBytesLength = reqLength/8; |
---|
1433 | int resiBitsLength = reqLength%8; |
---|
1434 | |
---|
1435 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
1436 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
1437 | |
---|
1438 | |
---|
1439 | size_t l; |
---|
1440 | for (l = 0; l < r1; l++) |
---|
1441 | { |
---|
1442 | |
---|
1443 | /////////////////////////// Process layer-0 /////////////////////////// |
---|
1444 | /* Process Row-0 data 0*/ |
---|
1445 | size_t index = l*r234; |
---|
1446 | size_t index2D = 0; |
---|
1447 | |
---|
1448 | type[index] = 0; |
---|
1449 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1450 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1451 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1452 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1453 | P1[index2D] = vce->data; |
---|
1454 | |
---|
1455 | /* Process Row-0 data 1*/ |
---|
1456 | index = l*r234+1; |
---|
1457 | index2D = 1; |
---|
1458 | |
---|
1459 | pred1D = P1[index2D-1]; |
---|
1460 | diff = spaceFillingValue[index] - pred1D; |
---|
1461 | |
---|
1462 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1463 | |
---|
1464 | if (itvNum < exe_params->intvCapacity) |
---|
1465 | { |
---|
1466 | if (diff < 0) itvNum = -itvNum; |
---|
1467 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1468 | P1[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1469 | } |
---|
1470 | else |
---|
1471 | { |
---|
1472 | type[index] = 0; |
---|
1473 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1474 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1475 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1476 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1477 | P1[index2D] = vce->data; |
---|
1478 | } |
---|
1479 | |
---|
1480 | /* Process Row-0 data 2 --> data r4-1 */ |
---|
1481 | for (j = 2; j < r4; j++) |
---|
1482 | { |
---|
1483 | index = l*r234+j; |
---|
1484 | index2D = j; |
---|
1485 | |
---|
1486 | pred1D = 2*P1[index2D-1] - P1[index2D-2]; |
---|
1487 | diff = spaceFillingValue[index] - pred1D; |
---|
1488 | |
---|
1489 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1490 | |
---|
1491 | if (itvNum < exe_params->intvCapacity) |
---|
1492 | { |
---|
1493 | if (diff < 0) itvNum = -itvNum; |
---|
1494 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1495 | P1[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1496 | } |
---|
1497 | else |
---|
1498 | { |
---|
1499 | type[index] = 0; |
---|
1500 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1501 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1502 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1503 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1504 | P1[index2D] = vce->data; |
---|
1505 | } |
---|
1506 | } |
---|
1507 | |
---|
1508 | /* Process Row-1 --> Row-r3-1 */ |
---|
1509 | for (i = 1; i < r3; i++) |
---|
1510 | { |
---|
1511 | /* Process row-i data 0 */ |
---|
1512 | index = l*r234+i*r4; |
---|
1513 | index2D = i*r4; |
---|
1514 | |
---|
1515 | pred1D = P1[index2D-r4]; |
---|
1516 | diff = spaceFillingValue[index] - pred1D; |
---|
1517 | |
---|
1518 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1519 | |
---|
1520 | if (itvNum < exe_params->intvCapacity) |
---|
1521 | { |
---|
1522 | if (diff < 0) itvNum = -itvNum; |
---|
1523 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1524 | P1[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1525 | } |
---|
1526 | else |
---|
1527 | { |
---|
1528 | type[index] = 0; |
---|
1529 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1530 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1531 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1532 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1533 | P1[index2D] = vce->data; |
---|
1534 | } |
---|
1535 | |
---|
1536 | /* Process row-i data 1 --> data r4-1*/ |
---|
1537 | for (j = 1; j < r4; j++) |
---|
1538 | { |
---|
1539 | index = l*r234+i*r4+j; |
---|
1540 | index2D = i*r4+j; |
---|
1541 | |
---|
1542 | pred2D = P1[index2D-1] + P1[index2D-r4] - P1[index2D-r4-1]; |
---|
1543 | |
---|
1544 | diff = spaceFillingValue[index] - pred2D; |
---|
1545 | |
---|
1546 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1547 | |
---|
1548 | if (itvNum < exe_params->intvCapacity) |
---|
1549 | { |
---|
1550 | if (diff < 0) itvNum = -itvNum; |
---|
1551 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1552 | P1[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1553 | } |
---|
1554 | else |
---|
1555 | { |
---|
1556 | type[index] = 0; |
---|
1557 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1558 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1559 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1560 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1561 | P1[index2D] = vce->data; |
---|
1562 | } |
---|
1563 | } |
---|
1564 | } |
---|
1565 | |
---|
1566 | |
---|
1567 | /////////////////////////// Process layer-1 --> layer-r2-1 /////////////////////////// |
---|
1568 | |
---|
1569 | for (k = 1; k < r2; k++) |
---|
1570 | { |
---|
1571 | /* Process Row-0 data 0*/ |
---|
1572 | index = l*r234+k*r34; |
---|
1573 | index2D = 0; |
---|
1574 | |
---|
1575 | pred1D = P1[index2D]; |
---|
1576 | diff = spaceFillingValue[index] - pred1D; |
---|
1577 | |
---|
1578 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1579 | |
---|
1580 | if (itvNum < exe_params->intvCapacity) |
---|
1581 | { |
---|
1582 | if (diff < 0) itvNum = -itvNum; |
---|
1583 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1584 | P0[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1585 | } |
---|
1586 | else |
---|
1587 | { |
---|
1588 | type[index] = 0; |
---|
1589 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1590 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1591 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1592 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1593 | P0[index2D] = vce->data; |
---|
1594 | } |
---|
1595 | |
---|
1596 | /* Process Row-0 data 1 --> data r4-1 */ |
---|
1597 | for (j = 1; j < r4; j++) |
---|
1598 | { |
---|
1599 | index = l*r234+k*r34+j; |
---|
1600 | index2D = j; |
---|
1601 | |
---|
1602 | pred2D = P0[index2D-1] + P1[index2D] - P1[index2D-1]; |
---|
1603 | diff = spaceFillingValue[index] - pred2D; |
---|
1604 | |
---|
1605 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1606 | |
---|
1607 | if (itvNum < exe_params->intvCapacity) |
---|
1608 | { |
---|
1609 | if (diff < 0) itvNum = -itvNum; |
---|
1610 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1611 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1612 | } |
---|
1613 | else |
---|
1614 | { |
---|
1615 | type[index] = 0; |
---|
1616 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1617 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1618 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1619 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1620 | P0[index2D] = vce->data; |
---|
1621 | } |
---|
1622 | } |
---|
1623 | |
---|
1624 | /* Process Row-1 --> Row-r3-1 */ |
---|
1625 | for (i = 1; i < r3; i++) |
---|
1626 | { |
---|
1627 | /* Process Row-i data 0 */ |
---|
1628 | index = l*r234+k*r34+i*r4; |
---|
1629 | index2D = i*r4; |
---|
1630 | |
---|
1631 | pred2D = P0[index2D-r4] + P1[index2D] - P1[index2D-r4]; |
---|
1632 | diff = spaceFillingValue[index] - pred2D; |
---|
1633 | |
---|
1634 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1635 | |
---|
1636 | if (itvNum < exe_params->intvCapacity) |
---|
1637 | { |
---|
1638 | if (diff < 0) itvNum = -itvNum; |
---|
1639 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1640 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1641 | } |
---|
1642 | else |
---|
1643 | { |
---|
1644 | type[index] = 0; |
---|
1645 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1646 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1647 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1648 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1649 | P0[index2D] = vce->data; |
---|
1650 | } |
---|
1651 | |
---|
1652 | /* Process Row-i data 1 --> data r4-1 */ |
---|
1653 | for (j = 1; j < r4; j++) |
---|
1654 | { |
---|
1655 | index = l*r234+k*r34+i*r4+j; |
---|
1656 | index2D = i*r4+j; |
---|
1657 | |
---|
1658 | pred3D = P0[index2D-1] + P0[index2D-r4]+ P1[index2D] - P0[index2D-r4-1] - P1[index2D-r4] - P1[index2D-1] + P1[index2D-r4-1]; |
---|
1659 | diff = spaceFillingValue[index] - pred3D; |
---|
1660 | |
---|
1661 | |
---|
1662 | itvNum = fabs(diff)/realPrecision + 1; |
---|
1663 | |
---|
1664 | if (itvNum < exe_params->intvCapacity) |
---|
1665 | { |
---|
1666 | if (diff < 0) itvNum = -itvNum; |
---|
1667 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
1668 | P0[index2D] = pred3D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
1669 | } |
---|
1670 | else |
---|
1671 | { |
---|
1672 | type[index] = 0; |
---|
1673 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
1674 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
1675 | memcpy(preDataBytes,vce->curBytes,4); |
---|
1676 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
1677 | P0[index2D] = vce->data; |
---|
1678 | } |
---|
1679 | } |
---|
1680 | } |
---|
1681 | |
---|
1682 | float *Pt; |
---|
1683 | Pt = P1; |
---|
1684 | P1 = P0; |
---|
1685 | P0 = Pt; |
---|
1686 | } |
---|
1687 | } |
---|
1688 | |
---|
1689 | free(P0); |
---|
1690 | free(P1); |
---|
1691 | size_t exactDataNum = exactLeadNumArray->size; |
---|
1692 | |
---|
1693 | TightDataPointStorageF* tdps; |
---|
1694 | |
---|
1695 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
1696 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
1697 | exactLeadNumArray->array, |
---|
1698 | resiBitArray->array, resiBitArray->size, |
---|
1699 | resiBitsLength, |
---|
1700 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
1701 | |
---|
1702 | //free memory |
---|
1703 | free_DIA(exactLeadNumArray); |
---|
1704 | free_DIA(resiBitArray); |
---|
1705 | free(type); |
---|
1706 | free(vce); |
---|
1707 | free(lce); |
---|
1708 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
1709 | |
---|
1710 | return tdps; |
---|
1711 | } |
---|
1712 | |
---|
1713 | char SZ_compress_args_float_NoCkRngeNoGzip_4D(unsigned char** newByteData, float *oriData, size_t r1, size_t r2, size_t r3, size_t r4, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f) |
---|
1714 | { |
---|
1715 | TightDataPointStorageF* tdps = SZ_compress_float_4D_MDQ(oriData, r1, r2, r3, r4, realPrecision, valueRangeSize, medianValue_f); |
---|
1716 | |
---|
1717 | convertTDPStoFlatBytes_float(tdps, newByteData, outSize); |
---|
1718 | |
---|
1719 | int dataLength = r1*r2*r3*r4; |
---|
1720 | if(*outSize>dataLength*sizeof(float)) |
---|
1721 | SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
1722 | |
---|
1723 | free_TightDataPointStorageF(tdps); |
---|
1724 | |
---|
1725 | return 0; |
---|
1726 | } |
---|
1727 | |
---|
1728 | void SZ_compress_args_float_withinRange(unsigned char** newByteData, float *oriData, size_t dataLength, size_t *outSize) |
---|
1729 | { |
---|
1730 | TightDataPointStorageF* tdps = (TightDataPointStorageF*) malloc(sizeof(TightDataPointStorageF)); |
---|
1731 | tdps->rtypeArray = NULL; |
---|
1732 | tdps->typeArray = NULL; |
---|
1733 | tdps->leadNumArray = NULL; |
---|
1734 | tdps->residualMidBits = NULL; |
---|
1735 | |
---|
1736 | tdps->allSameData = 1; |
---|
1737 | tdps->dataSeriesLength = dataLength; |
---|
1738 | tdps->exactMidBytes = (unsigned char*)malloc(sizeof(unsigned char)*4); |
---|
1739 | tdps->pwrErrBoundBytes = NULL; |
---|
1740 | tdps->isLossless = 0; |
---|
1741 | float value = oriData[0]; |
---|
1742 | floatToBytes(tdps->exactMidBytes, value); |
---|
1743 | tdps->exactMidBytes_size = 4; |
---|
1744 | |
---|
1745 | size_t tmpOutSize; |
---|
1746 | //unsigned char *tmpByteData; |
---|
1747 | convertTDPStoFlatBytes_float(tdps, newByteData, &tmpOutSize); |
---|
1748 | |
---|
1749 | //*newByteData = (unsigned char*)malloc(sizeof(unsigned char)*12); //for floating-point data (1+3+4+4) |
---|
1750 | //memcpy(*newByteData, tmpByteData, 12); |
---|
1751 | *outSize = tmpOutSize; //8+SZ_SIZE_TYPE; //8==3+1+4(float_size) |
---|
1752 | free_TightDataPointStorageF(tdps); |
---|
1753 | } |
---|
1754 | |
---|
1755 | int SZ_compress_args_float_wRngeNoGzip(unsigned char** newByteData, float *oriData, |
---|
1756 | size_t r5, size_t r4, size_t r3, size_t r2, size_t r1, size_t *outSize, |
---|
1757 | int errBoundMode, double absErr_Bound, double relBoundRatio, double pwrErrRatio) |
---|
1758 | { |
---|
1759 | int status = SZ_SCES; |
---|
1760 | size_t dataLength = computeDataLength(r5,r4,r3,r2,r1); |
---|
1761 | float valueRangeSize = 0, medianValue = 0; |
---|
1762 | |
---|
1763 | float min = computeRangeSize_float(oriData, dataLength, &valueRangeSize, &medianValue); |
---|
1764 | float max = min+valueRangeSize; |
---|
1765 | double realPrecision = getRealPrecision_float(valueRangeSize, errBoundMode, absErr_Bound, relBoundRatio, &status); |
---|
1766 | |
---|
1767 | if(valueRangeSize <= realPrecision) |
---|
1768 | { |
---|
1769 | SZ_compress_args_float_withinRange(newByteData, oriData, dataLength, outSize); |
---|
1770 | } |
---|
1771 | else |
---|
1772 | { |
---|
1773 | // SZ_compress_args_float_NoCkRngeNoGzip_2D(newByteData, oriData, r2, r1, realPrecision, outSize); |
---|
1774 | if(r5==0&&r4==0&&r3==0&&r2==0) |
---|
1775 | { |
---|
1776 | if(errBoundMode>=PW_REL) |
---|
1777 | { |
---|
1778 | SZ_compress_args_float_NoCkRngeNoGzip_1D_pwr_pre_log(newByteData, oriData, pwrErrRatio, r1, outSize, min, max); |
---|
1779 | //SZ_compress_args_float_NoCkRngeNoGzip_1D_pwrgroup(newByteData, oriData, r1, absErr_Bound, relBoundRatio, pwrErrRatio, valueRangeSize, medianValue, outSize); |
---|
1780 | } |
---|
1781 | else |
---|
1782 | SZ_compress_args_float_NoCkRngeNoGzip_1D(newByteData, oriData, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
1783 | } |
---|
1784 | else if(r5==0&&r4==0&&r3==0) |
---|
1785 | { |
---|
1786 | if(errBoundMode>=PW_REL) |
---|
1787 | SZ_compress_args_float_NoCkRngeNoGzip_2D_pwr_pre_log(newByteData, oriData, pwrErrRatio, r2, r1, outSize, min, max); |
---|
1788 | else |
---|
1789 | SZ_compress_args_float_NoCkRngeNoGzip_2D(newByteData, oriData, r2, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
1790 | } |
---|
1791 | else if(r5==0&&r4==0) |
---|
1792 | { |
---|
1793 | if(errBoundMode>=PW_REL) |
---|
1794 | SZ_compress_args_float_NoCkRngeNoGzip_3D_pwr_pre_log(newByteData, oriData, pwrErrRatio, r3, r2, r1, outSize, min, max); |
---|
1795 | else |
---|
1796 | SZ_compress_args_float_NoCkRngeNoGzip_3D(newByteData, oriData, r3, r2, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
1797 | } |
---|
1798 | else if(r5==0) |
---|
1799 | { |
---|
1800 | if(errBoundMode>=PW_REL) |
---|
1801 | SZ_compress_args_float_NoCkRngeNoGzip_3D_pwr_pre_log(newByteData, oriData, pwrErrRatio, r4*r3, r2, r1, outSize, min, max); |
---|
1802 | else |
---|
1803 | SZ_compress_args_float_NoCkRngeNoGzip_3D(newByteData, oriData, r4*r3, r2, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
1804 | } |
---|
1805 | } |
---|
1806 | return status; |
---|
1807 | } |
---|
1808 | |
---|
1809 | int SZ_compress_args_float(unsigned char** newByteData, float *oriData, |
---|
1810 | size_t r5, size_t r4, size_t r3, size_t r2, size_t r1, size_t *outSize, |
---|
1811 | int errBoundMode, double absErr_Bound, double relBoundRatio, double pwRelBoundRatio) |
---|
1812 | { |
---|
1813 | confparams_cpr->errorBoundMode = errBoundMode; |
---|
1814 | if(errBoundMode==PW_REL) |
---|
1815 | { |
---|
1816 | confparams_cpr->pw_relBoundRatio = pwRelBoundRatio; |
---|
1817 | //confparams_cpr->pwr_type = SZ_PWR_MIN_TYPE; |
---|
1818 | if(confparams_cpr->pwr_type==SZ_PWR_AVG_TYPE && r3 != 0 ) |
---|
1819 | { |
---|
1820 | printf("Error: Current version doesn't support 3D data compression with point-wise relative error bound being based on pwrType=AVG\n"); |
---|
1821 | exit(0); |
---|
1822 | return SZ_NSCS; |
---|
1823 | } |
---|
1824 | } |
---|
1825 | int status = SZ_SCES; |
---|
1826 | size_t dataLength = computeDataLength(r5,r4,r3,r2,r1); |
---|
1827 | |
---|
1828 | if(dataLength <= MIN_NUM_OF_ELEMENTS) |
---|
1829 | { |
---|
1830 | *newByteData = SZ_skip_compress_float(oriData, dataLength, outSize); |
---|
1831 | return status; |
---|
1832 | } |
---|
1833 | |
---|
1834 | float valueRangeSize = 0, medianValue = 0; |
---|
1835 | |
---|
1836 | float min = computeRangeSize_float(oriData, dataLength, &valueRangeSize, &medianValue); |
---|
1837 | float max = min+valueRangeSize; |
---|
1838 | double realPrecision = 0; |
---|
1839 | |
---|
1840 | if(confparams_cpr->errorBoundMode==PSNR) |
---|
1841 | { |
---|
1842 | confparams_cpr->errorBoundMode = ABS; |
---|
1843 | realPrecision = confparams_cpr->absErrBound = computeABSErrBoundFromPSNR(confparams_cpr->psnr, (double)confparams_cpr->predThreshold, (double)valueRangeSize); |
---|
1844 | //printf("realPrecision=%lf\n", realPrecision); |
---|
1845 | } |
---|
1846 | else |
---|
1847 | realPrecision = getRealPrecision_float(valueRangeSize, errBoundMode, absErr_Bound, relBoundRatio, &status); |
---|
1848 | |
---|
1849 | if(valueRangeSize <= realPrecision) |
---|
1850 | { |
---|
1851 | SZ_compress_args_float_withinRange(newByteData, oriData, dataLength, outSize); |
---|
1852 | } |
---|
1853 | else |
---|
1854 | { |
---|
1855 | size_t tmpOutSize = 0; |
---|
1856 | unsigned char* tmpByteData; |
---|
1857 | |
---|
1858 | if (r2==0) |
---|
1859 | { |
---|
1860 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
1861 | { |
---|
1862 | SZ_compress_args_float_NoCkRngeNoGzip_1D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r1, &tmpOutSize, min, max); |
---|
1863 | //SZ_compress_args_float_NoCkRngeNoGzip_1D_pwrgroup(&tmpByteData, oriData, r1, absErr_Bound, relBoundRatio, pwRelBoundRatio, valueRangeSize, medianValue, &tmpOutSize); |
---|
1864 | } |
---|
1865 | else |
---|
1866 | #ifdef HAVE_TIMECMPR |
---|
1867 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1868 | multisteps->compressionType = SZ_compress_args_float_NoCkRngeNoGzip_1D(&tmpByteData, oriData, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
1869 | else |
---|
1870 | #endif |
---|
1871 | SZ_compress_args_float_NoCkRngeNoGzip_1D(&tmpByteData, oriData, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
1872 | } |
---|
1873 | else |
---|
1874 | if (r3==0) |
---|
1875 | { |
---|
1876 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
1877 | SZ_compress_args_float_NoCkRngeNoGzip_2D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r2, r1, &tmpOutSize, min, max); |
---|
1878 | else |
---|
1879 | #ifdef HAVE_TIMECMPR |
---|
1880 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1881 | multisteps->compressionType = SZ_compress_args_float_NoCkRngeNoGzip_2D(&tmpByteData, oriData, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
1882 | else |
---|
1883 | #endif |
---|
1884 | { |
---|
1885 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
1886 | SZ_compress_args_float_NoCkRngeNoGzip_2D(&tmpByteData, oriData, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
1887 | else |
---|
1888 | tmpByteData = SZ_compress_float_2D_MDQ_nonblocked_with_blocked_regression(oriData, r2, r1, realPrecision, &tmpOutSize); |
---|
1889 | } |
---|
1890 | } |
---|
1891 | else |
---|
1892 | if (r4==0) |
---|
1893 | { |
---|
1894 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
1895 | SZ_compress_args_float_NoCkRngeNoGzip_3D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r3, r2, r1, &tmpOutSize, min, max); |
---|
1896 | else |
---|
1897 | #ifdef HAVE_TIMECMPR |
---|
1898 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1899 | multisteps->compressionType = SZ_compress_args_float_NoCkRngeNoGzip_3D(&tmpByteData, oriData, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
1900 | else |
---|
1901 | #endif |
---|
1902 | { |
---|
1903 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
1904 | SZ_compress_args_float_NoCkRngeNoGzip_3D(&tmpByteData, oriData, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
1905 | else |
---|
1906 | tmpByteData = SZ_compress_float_3D_MDQ_nonblocked_with_blocked_regression(oriData, r3, r2, r1, realPrecision, &tmpOutSize); |
---|
1907 | } |
---|
1908 | } |
---|
1909 | else |
---|
1910 | if (r5==0) |
---|
1911 | { |
---|
1912 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
1913 | SZ_compress_args_float_NoCkRngeNoGzip_3D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r4*r3, r2, r1, &tmpOutSize, min, max); |
---|
1914 | //ToDO |
---|
1915 | //SZ_compress_args_float_NoCkRngeNoGzip_4D_pwr(&tmpByteData, oriData, r4, r3, r2, r1, &tmpOutSize, min, max); |
---|
1916 | else |
---|
1917 | #ifdef HAVE_TIMECMPR |
---|
1918 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
1919 | multisteps->compressionType = SZ_compress_args_float_NoCkRngeNoGzip_4D(&tmpByteData, oriData, r4, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
1920 | else |
---|
1921 | #endif |
---|
1922 | { |
---|
1923 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
1924 | SZ_compress_args_float_NoCkRngeNoGzip_4D(&tmpByteData, oriData, r4, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
1925 | else |
---|
1926 | tmpByteData = SZ_compress_float_3D_MDQ_nonblocked_with_blocked_regression(oriData, r4*r3, r2, r1, realPrecision, &tmpOutSize); |
---|
1927 | } |
---|
1928 | } |
---|
1929 | else |
---|
1930 | { |
---|
1931 | printf("Error: doesn't support 5 dimensions for now.\n"); |
---|
1932 | status = SZ_DERR; //dimension error |
---|
1933 | } |
---|
1934 | //Call Gzip to do the further compression. |
---|
1935 | if(confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
1936 | { |
---|
1937 | *outSize = tmpOutSize; |
---|
1938 | *newByteData = tmpByteData; |
---|
1939 | } |
---|
1940 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION || confparams_cpr->szMode==SZ_TEMPORAL_COMPRESSION) |
---|
1941 | { |
---|
1942 | *outSize = sz_lossless_compress(confparams_cpr->losslessCompressor, confparams_cpr->gzipMode, tmpByteData, tmpOutSize, newByteData); |
---|
1943 | free(tmpByteData); |
---|
1944 | } |
---|
1945 | else |
---|
1946 | { |
---|
1947 | printf("Error: Wrong setting of confparams_cpr->szMode in the float compression.\n"); |
---|
1948 | status = SZ_MERR; //mode error |
---|
1949 | } |
---|
1950 | } |
---|
1951 | |
---|
1952 | return status; |
---|
1953 | } |
---|
1954 | |
---|
1955 | |
---|
1956 | void computeReqLength_float(double realPrecision, short radExpo, int* reqLength, float* medianValue) |
---|
1957 | { |
---|
1958 | short reqExpo = getPrecisionReqLength_double(realPrecision); |
---|
1959 | *reqLength = 9+radExpo - reqExpo; //radExpo-reqExpo == reqMantiLength |
---|
1960 | if(*reqLength<9) |
---|
1961 | *reqLength = 9; |
---|
1962 | if(*reqLength>32) |
---|
1963 | { |
---|
1964 | *reqLength = 32; |
---|
1965 | *medianValue = 0; |
---|
1966 | } |
---|
1967 | } |
---|
1968 | |
---|
1969 | //TODO |
---|
1970 | int SZ_compress_args_float_subblock(unsigned char* compressedBytes, float *oriData, |
---|
1971 | size_t r5, size_t r4, size_t r3, size_t r2, size_t r1, |
---|
1972 | size_t s5, size_t s4, size_t s3, size_t s2, size_t s1, |
---|
1973 | size_t e5, size_t e4, size_t e3, size_t e2, size_t e1, |
---|
1974 | size_t *outSize, int errBoundMode, double absErr_Bound, double relBoundRatio) |
---|
1975 | { |
---|
1976 | int status = SZ_SCES; |
---|
1977 | float valueRangeSize = 0, medianValue = 0; |
---|
1978 | computeRangeSize_float_subblock(oriData, &valueRangeSize, &medianValue, r5, r4, r3, r2, r1, s5, s4, s3, s2, s1, e5, e4, e3, e2, e1); |
---|
1979 | |
---|
1980 | double realPrecision = getRealPrecision_float(valueRangeSize, errBoundMode, absErr_Bound, relBoundRatio, &status); |
---|
1981 | |
---|
1982 | if(valueRangeSize <= realPrecision) |
---|
1983 | { |
---|
1984 | //TODO |
---|
1985 | //SZ_compress_args_float_withinRange_subblock(); |
---|
1986 | } |
---|
1987 | else |
---|
1988 | { |
---|
1989 | if (r2==0) |
---|
1990 | { |
---|
1991 | if(errBoundMode>=PW_REL) |
---|
1992 | { |
---|
1993 | //TODO |
---|
1994 | //SZ_compress_args_float_NoCkRngeNoGzip_1D_pwr_subblock(); |
---|
1995 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
1996 | } |
---|
1997 | else |
---|
1998 | SZ_compress_args_float_NoCkRnge_1D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r1, s1, e1); |
---|
1999 | } |
---|
2000 | else |
---|
2001 | if (r3==0) |
---|
2002 | { |
---|
2003 | //TODO |
---|
2004 | if(errBoundMode>=PW_REL) |
---|
2005 | { |
---|
2006 | //TODO |
---|
2007 | //SZ_compress_args_float_NoCkRngeNoGzip_2D_pwr_subblock(); |
---|
2008 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
2009 | } |
---|
2010 | else |
---|
2011 | SZ_compress_args_float_NoCkRnge_2D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r2, r1, s2, s1, e2, e1); |
---|
2012 | } |
---|
2013 | else |
---|
2014 | if (r4==0) |
---|
2015 | { |
---|
2016 | if(errBoundMode>=PW_REL) |
---|
2017 | { |
---|
2018 | //TODO |
---|
2019 | //SZ_compress_args_float_NoCkRngeNoGzip_3D_pwr_subblock(); |
---|
2020 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
2021 | } |
---|
2022 | else |
---|
2023 | SZ_compress_args_float_NoCkRnge_3D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r3, r2, r1, s3, s2, s1, e3, e2, e1); |
---|
2024 | } |
---|
2025 | else |
---|
2026 | if (r5==0) |
---|
2027 | { |
---|
2028 | if(errBoundMode>=PW_REL) |
---|
2029 | { |
---|
2030 | //TODO |
---|
2031 | //SZ_compress_args_float_NoCkRngeNoGzip_4D_pwr_subblock(); |
---|
2032 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
2033 | } |
---|
2034 | else |
---|
2035 | SZ_compress_args_float_NoCkRnge_4D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r4, r3, r2, r1, s4, s3, s2, s1, e4, e3, e2, e1); |
---|
2036 | } |
---|
2037 | else |
---|
2038 | { |
---|
2039 | printf("Error: doesn't support 5 dimensions for now.\n"); |
---|
2040 | status = SZ_DERR; //dimension error |
---|
2041 | } |
---|
2042 | } |
---|
2043 | return status; |
---|
2044 | } |
---|
2045 | |
---|
2046 | void SZ_compress_args_float_NoCkRnge_1D_subblock(unsigned char* compressedBytes, float *oriData, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f, |
---|
2047 | size_t r1, size_t s1, size_t e1) |
---|
2048 | { |
---|
2049 | TightDataPointStorageF* tdps = SZ_compress_float_1D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_f, r1, s1, e1); |
---|
2050 | |
---|
2051 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
2052 | convertTDPStoFlatBytes_float_args(tdps, compressedBytes, outSize); |
---|
2053 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
2054 | { |
---|
2055 | unsigned char *tmpCompBytes; |
---|
2056 | size_t tmpOutSize; |
---|
2057 | convertTDPStoFlatBytes_float(tdps, &tmpCompBytes, &tmpOutSize); |
---|
2058 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
2059 | free(tmpCompBytes); |
---|
2060 | } |
---|
2061 | else |
---|
2062 | { |
---|
2063 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
2064 | } |
---|
2065 | |
---|
2066 | //TODO |
---|
2067 | // if(*outSize>dataLength*sizeof(float)) |
---|
2068 | // SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
2069 | |
---|
2070 | free_TightDataPointStorageF(tdps); |
---|
2071 | } |
---|
2072 | |
---|
2073 | void SZ_compress_args_float_NoCkRnge_2D_subblock(unsigned char* compressedBytes, float *oriData, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f, |
---|
2074 | size_t r2, size_t r1, size_t s2, size_t s1, size_t e2, size_t e1) |
---|
2075 | { |
---|
2076 | TightDataPointStorageF* tdps = SZ_compress_float_2D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_f, r2, r1, s2, s1, e2, e1); |
---|
2077 | |
---|
2078 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
2079 | convertTDPStoFlatBytes_float_args(tdps, compressedBytes, outSize); |
---|
2080 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
2081 | { |
---|
2082 | unsigned char *tmpCompBytes; |
---|
2083 | size_t tmpOutSize; |
---|
2084 | convertTDPStoFlatBytes_float(tdps, &tmpCompBytes, &tmpOutSize); |
---|
2085 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
2086 | free(tmpCompBytes); |
---|
2087 | } |
---|
2088 | else |
---|
2089 | { |
---|
2090 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
2091 | } |
---|
2092 | |
---|
2093 | //TODO |
---|
2094 | // if(*outSize>dataLength*sizeof(float)) |
---|
2095 | // SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
2096 | |
---|
2097 | free_TightDataPointStorageF(tdps); |
---|
2098 | } |
---|
2099 | |
---|
2100 | void SZ_compress_args_float_NoCkRnge_3D_subblock(unsigned char* compressedBytes, float *oriData, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f, |
---|
2101 | size_t r3, size_t r2, size_t r1, size_t s3, size_t s2, size_t s1, size_t e3, size_t e2, size_t e1) |
---|
2102 | { |
---|
2103 | TightDataPointStorageF* tdps = SZ_compress_float_3D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_f, r3, r2, r1, s3, s2, s1, e3, e2, e1); |
---|
2104 | |
---|
2105 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
2106 | convertTDPStoFlatBytes_float_args(tdps, compressedBytes, outSize); |
---|
2107 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
2108 | { |
---|
2109 | unsigned char *tmpCompBytes; |
---|
2110 | size_t tmpOutSize; |
---|
2111 | convertTDPStoFlatBytes_float(tdps, &tmpCompBytes, &tmpOutSize); |
---|
2112 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
2113 | free(tmpCompBytes); |
---|
2114 | } |
---|
2115 | else |
---|
2116 | { |
---|
2117 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
2118 | } |
---|
2119 | |
---|
2120 | //TODO |
---|
2121 | // if(*outSize>dataLength*sizeof(float)) |
---|
2122 | // SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
2123 | |
---|
2124 | free_TightDataPointStorageF(tdps); |
---|
2125 | } |
---|
2126 | |
---|
2127 | void SZ_compress_args_float_NoCkRnge_4D_subblock(unsigned char* compressedBytes, float *oriData, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f, |
---|
2128 | size_t r4, size_t r3, size_t r2, size_t r1, size_t s4, size_t s3, size_t s2, size_t s1, size_t e4, size_t e3, size_t e2, size_t e1) |
---|
2129 | { |
---|
2130 | TightDataPointStorageF* tdps = SZ_compress_float_4D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_f, r4, r3, r2, r1, s4, s3, s2, s1, e4, e3, e2, e1); |
---|
2131 | |
---|
2132 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
2133 | convertTDPStoFlatBytes_float_args(tdps, compressedBytes, outSize); |
---|
2134 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
2135 | { |
---|
2136 | unsigned char *tmpCompBytes; |
---|
2137 | size_t tmpOutSize; |
---|
2138 | convertTDPStoFlatBytes_float(tdps, &tmpCompBytes, &tmpOutSize); |
---|
2139 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
2140 | free(tmpCompBytes); |
---|
2141 | } |
---|
2142 | else |
---|
2143 | { |
---|
2144 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
2145 | } |
---|
2146 | |
---|
2147 | //TODO |
---|
2148 | // if(*outSize>dataLength*sizeof(float)) |
---|
2149 | // SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
2150 | |
---|
2151 | free_TightDataPointStorageF(tdps); |
---|
2152 | |
---|
2153 | } |
---|
2154 | |
---|
2155 | unsigned int optimize_intervals_float_1D_subblock(float *oriData, double realPrecision, size_t r1, size_t s1, size_t e1) |
---|
2156 | { |
---|
2157 | size_t dataLength = e1 - s1 + 1; |
---|
2158 | oriData = oriData + s1; |
---|
2159 | |
---|
2160 | size_t i = 0; |
---|
2161 | unsigned long radiusIndex; |
---|
2162 | float pred_value = 0, pred_err; |
---|
2163 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
2164 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
2165 | size_t totalSampleSize = dataLength/confparams_cpr->sampleDistance; |
---|
2166 | for(i=2;i<dataLength;i++) |
---|
2167 | { |
---|
2168 | if(i%confparams_cpr->sampleDistance==0) |
---|
2169 | { |
---|
2170 | pred_value = 2*oriData[i-1] - oriData[i-2]; |
---|
2171 | //pred_value = oriData[i-1]; |
---|
2172 | pred_err = fabs(pred_value - oriData[i]); |
---|
2173 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
2174 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
2175 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
2176 | intervals[radiusIndex]++; |
---|
2177 | } |
---|
2178 | } |
---|
2179 | //compute the appropriate number |
---|
2180 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
2181 | size_t sum = 0; |
---|
2182 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
2183 | { |
---|
2184 | sum += intervals[i]; |
---|
2185 | if(sum>targetCount) |
---|
2186 | break; |
---|
2187 | } |
---|
2188 | if(i>=confparams_cpr->maxRangeRadius) |
---|
2189 | i = confparams_cpr->maxRangeRadius-1; |
---|
2190 | |
---|
2191 | unsigned int accIntervals = 2*(i+1); |
---|
2192 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
2193 | |
---|
2194 | if(powerOf2<32) |
---|
2195 | powerOf2 = 32; |
---|
2196 | |
---|
2197 | free(intervals); |
---|
2198 | //printf("accIntervals=%d, powerOf2=%d\n", accIntervals, powerOf2); |
---|
2199 | return powerOf2; |
---|
2200 | } |
---|
2201 | |
---|
2202 | unsigned int optimize_intervals_float_2D_subblock(float *oriData, double realPrecision, size_t r1, size_t r2, size_t s1, size_t s2, size_t e1, size_t e2) |
---|
2203 | { |
---|
2204 | size_t R1 = e1 - s1 + 1; |
---|
2205 | size_t R2 = e2 - s2 + 1; |
---|
2206 | |
---|
2207 | size_t i,j, index; |
---|
2208 | unsigned long radiusIndex; |
---|
2209 | float pred_value = 0, pred_err; |
---|
2210 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
2211 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
2212 | size_t totalSampleSize = R1*R2/confparams_cpr->sampleDistance; |
---|
2213 | for(i=s1+1;i<=e1;i++) |
---|
2214 | { |
---|
2215 | for(j=s2+1;j<=e2;j++) |
---|
2216 | { |
---|
2217 | if((i+j)%confparams_cpr->sampleDistance==0) |
---|
2218 | { |
---|
2219 | index = i*r2+j; |
---|
2220 | pred_value = oriData[index-1] + oriData[index-r2] - oriData[index-r2-1]; |
---|
2221 | pred_err = fabs(pred_value - oriData[index]); |
---|
2222 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
2223 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
2224 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
2225 | intervals[radiusIndex]++; |
---|
2226 | } |
---|
2227 | } |
---|
2228 | } |
---|
2229 | //compute the appropriate number |
---|
2230 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
2231 | size_t sum = 0; |
---|
2232 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
2233 | { |
---|
2234 | sum += intervals[i]; |
---|
2235 | if(sum>targetCount) |
---|
2236 | break; |
---|
2237 | } |
---|
2238 | if(i>=confparams_cpr->maxRangeRadius) |
---|
2239 | i = confparams_cpr->maxRangeRadius-1; |
---|
2240 | unsigned int accIntervals = 2*(i+1); |
---|
2241 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
2242 | |
---|
2243 | if(powerOf2<32) |
---|
2244 | powerOf2 = 32; |
---|
2245 | |
---|
2246 | free(intervals); |
---|
2247 | //printf("confparams_cpr->maxRangeRadius = %d, accIntervals=%d, powerOf2=%d\n", confparams_cpr->maxRangeRadius, accIntervals, powerOf2); |
---|
2248 | return powerOf2; |
---|
2249 | } |
---|
2250 | |
---|
2251 | unsigned int optimize_intervals_float_3D_subblock(float *oriData, double realPrecision, size_t r1, size_t r2, size_t r3, size_t s1, size_t s2, size_t s3, size_t e1, size_t e2, size_t e3) |
---|
2252 | { |
---|
2253 | size_t R1 = e1 - s1 + 1; |
---|
2254 | size_t R2 = e2 - s2 + 1; |
---|
2255 | size_t R3 = e3 - s3 + 1; |
---|
2256 | |
---|
2257 | size_t r23 = r2*r3; |
---|
2258 | |
---|
2259 | size_t i,j,k, index; |
---|
2260 | unsigned long radiusIndex; |
---|
2261 | float pred_value = 0, pred_err; |
---|
2262 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
2263 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
2264 | size_t totalSampleSize = R1*R2*R3/confparams_cpr->sampleDistance; |
---|
2265 | for(i=s1+1;i<=e1;i++) |
---|
2266 | { |
---|
2267 | for(j=s2+1;j<=e2;j++) |
---|
2268 | { |
---|
2269 | for(k=s3+1;k<=e3;k++) |
---|
2270 | { |
---|
2271 | if((i+j+k)%confparams_cpr->sampleDistance==0) |
---|
2272 | { |
---|
2273 | index = i*r23+j*r3+k; |
---|
2274 | pred_value = oriData[index-1] + oriData[index-r3] + oriData[index-r23] |
---|
2275 | - oriData[index-1-r23] - oriData[index-r3-1] - oriData[index-r3-r23] + oriData[index-r3-r23-1]; |
---|
2276 | pred_err = fabs(pred_value - oriData[index]); |
---|
2277 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
2278 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
2279 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
2280 | intervals[radiusIndex]++; |
---|
2281 | } |
---|
2282 | } |
---|
2283 | } |
---|
2284 | } |
---|
2285 | //compute the appropriate number |
---|
2286 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
2287 | size_t sum = 0; |
---|
2288 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
2289 | { |
---|
2290 | sum += intervals[i]; |
---|
2291 | if(sum>targetCount) |
---|
2292 | break; |
---|
2293 | } |
---|
2294 | if(i>=confparams_cpr->maxRangeRadius) |
---|
2295 | i = confparams_cpr->maxRangeRadius-1; |
---|
2296 | unsigned int accIntervals = 2*(i+1); |
---|
2297 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
2298 | |
---|
2299 | if(powerOf2<32) |
---|
2300 | powerOf2 = 32; |
---|
2301 | |
---|
2302 | free(intervals); |
---|
2303 | return powerOf2; |
---|
2304 | } |
---|
2305 | |
---|
2306 | unsigned int optimize_intervals_float_4D_subblock(float *oriData, double realPrecision, |
---|
2307 | size_t r1, size_t r2, size_t r3, size_t r4, size_t s1, size_t s2, size_t s3, size_t s4, size_t e1, size_t e2, size_t e3, size_t e4) |
---|
2308 | { |
---|
2309 | size_t R1 = e1 - s1 + 1; |
---|
2310 | size_t R2 = e2 - s2 + 1; |
---|
2311 | size_t R3 = e3 - s3 + 1; |
---|
2312 | size_t R4 = e4 - s4 + 1; |
---|
2313 | |
---|
2314 | size_t r34 = r3*r4; |
---|
2315 | size_t r234 = r2*r3*r4; |
---|
2316 | |
---|
2317 | size_t i,j,k,l, index; |
---|
2318 | unsigned long radiusIndex; |
---|
2319 | float pred_value = 0, pred_err; |
---|
2320 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
2321 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
2322 | size_t totalSampleSize = R1*R2*R3*R4/confparams_cpr->sampleDistance; |
---|
2323 | for(i=s1+1;i<=e1;i++) |
---|
2324 | { |
---|
2325 | for(j=s2+1;j<=e2;j++) |
---|
2326 | { |
---|
2327 | for(k=s3+1;k<=e3;k++) |
---|
2328 | { |
---|
2329 | for (l=s4+1;l<=e4;l++) |
---|
2330 | { |
---|
2331 | if((i+j+k+l)%confparams_cpr->sampleDistance==0) |
---|
2332 | { |
---|
2333 | index = i*r234+j*r34+k*r4+l; |
---|
2334 | pred_value = oriData[index-1] + oriData[index-r4] + oriData[index-r34] |
---|
2335 | - oriData[index-1-r34] - oriData[index-r4-1] - oriData[index-r4-r34] + oriData[index-r4-r34-1]; |
---|
2336 | pred_err = fabs(pred_value - oriData[index]); |
---|
2337 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
2338 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
2339 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
2340 | intervals[radiusIndex]++; |
---|
2341 | } |
---|
2342 | } |
---|
2343 | } |
---|
2344 | } |
---|
2345 | } |
---|
2346 | //compute the appropriate number |
---|
2347 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
2348 | size_t sum = 0; |
---|
2349 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
2350 | { |
---|
2351 | sum += intervals[i]; |
---|
2352 | if(sum>targetCount) |
---|
2353 | break; |
---|
2354 | } |
---|
2355 | if(i>=confparams_cpr->maxRangeRadius) |
---|
2356 | i = confparams_cpr->maxRangeRadius-1; |
---|
2357 | |
---|
2358 | unsigned int accIntervals = 2*(i+1); |
---|
2359 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
2360 | |
---|
2361 | if(powerOf2<32) |
---|
2362 | powerOf2 = 32; |
---|
2363 | |
---|
2364 | free(intervals); |
---|
2365 | return powerOf2; |
---|
2366 | } |
---|
2367 | |
---|
2368 | TightDataPointStorageF* SZ_compress_float_1D_MDQ_subblock(float *oriData, double realPrecision, float valueRangeSize, float medianValue_f, |
---|
2369 | size_t r1, size_t s1, size_t e1) |
---|
2370 | { |
---|
2371 | size_t dataLength = e1 - s1 + 1; |
---|
2372 | unsigned int quantization_intervals; |
---|
2373 | if(exe_params->optQuantMode==1) |
---|
2374 | quantization_intervals = optimize_intervals_float_1D_subblock(oriData, realPrecision, r1, s1, e1); |
---|
2375 | else |
---|
2376 | quantization_intervals = exe_params->intvCapacity; |
---|
2377 | updateQuantizationInfo(quantization_intervals); |
---|
2378 | |
---|
2379 | size_t i; |
---|
2380 | int reqLength; |
---|
2381 | float medianValue = medianValue_f; |
---|
2382 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
2383 | |
---|
2384 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
2385 | |
---|
2386 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
2387 | |
---|
2388 | float* spaceFillingValue = oriData + s1; |
---|
2389 | |
---|
2390 | DynamicIntArray *exactLeadNumArray; |
---|
2391 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
2392 | |
---|
2393 | DynamicByteArray *exactMidByteArray; |
---|
2394 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
2395 | |
---|
2396 | DynamicIntArray *resiBitArray; |
---|
2397 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
2398 | |
---|
2399 | type[0] = 0; |
---|
2400 | |
---|
2401 | unsigned char preDataBytes[4]; |
---|
2402 | intToBytes_bigEndian(preDataBytes, 0); |
---|
2403 | |
---|
2404 | int reqBytesLength = reqLength/8; |
---|
2405 | int resiBitsLength = reqLength%8; |
---|
2406 | float last3CmprsData[3] = {0}; |
---|
2407 | |
---|
2408 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
2409 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
2410 | |
---|
2411 | //add the first data |
---|
2412 | compressSingleFloatValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2413 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2414 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2415 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2416 | listAdd_float(last3CmprsData, vce->data); |
---|
2417 | |
---|
2418 | //add the second data |
---|
2419 | type[1] = 0; |
---|
2420 | compressSingleFloatValue(vce, spaceFillingValue[1], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2421 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2422 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2423 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2424 | listAdd_float(last3CmprsData, vce->data); |
---|
2425 | |
---|
2426 | int state; |
---|
2427 | double checkRadius; |
---|
2428 | float curData; |
---|
2429 | float pred; |
---|
2430 | float predAbsErr; |
---|
2431 | checkRadius = (exe_params->intvCapacity-1)*realPrecision; |
---|
2432 | double interval = 2*realPrecision; |
---|
2433 | |
---|
2434 | for(i=2;i<dataLength;i++) |
---|
2435 | { |
---|
2436 | curData = spaceFillingValue[i]; |
---|
2437 | pred = 2*last3CmprsData[0] - last3CmprsData[1]; |
---|
2438 | predAbsErr = fabs(curData - pred); |
---|
2439 | if(predAbsErr<=checkRadius) |
---|
2440 | { |
---|
2441 | state = (predAbsErr/realPrecision+1)/2; |
---|
2442 | if(curData>=pred) |
---|
2443 | { |
---|
2444 | type[i] = exe_params->intvRadius+state; |
---|
2445 | pred = pred + state*interval; |
---|
2446 | } |
---|
2447 | else |
---|
2448 | { |
---|
2449 | type[i] = exe_params->intvRadius-state; |
---|
2450 | pred = pred - state*interval; |
---|
2451 | } |
---|
2452 | |
---|
2453 | listAdd_float(last3CmprsData, pred); |
---|
2454 | continue; |
---|
2455 | } |
---|
2456 | |
---|
2457 | //unpredictable data processing |
---|
2458 | type[i] = 0; |
---|
2459 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2460 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2461 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2462 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2463 | |
---|
2464 | listAdd_float(last3CmprsData, vce->data); |
---|
2465 | } |
---|
2466 | |
---|
2467 | size_t exactDataNum = exactLeadNumArray->size; |
---|
2468 | |
---|
2469 | TightDataPointStorageF* tdps; |
---|
2470 | |
---|
2471 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
2472 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
2473 | exactLeadNumArray->array, |
---|
2474 | resiBitArray->array, resiBitArray->size, |
---|
2475 | resiBitsLength, |
---|
2476 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
2477 | |
---|
2478 | //free memory |
---|
2479 | free_DIA(exactLeadNumArray); |
---|
2480 | free_DIA(resiBitArray); |
---|
2481 | free(type); |
---|
2482 | free(vce); |
---|
2483 | free(lce); |
---|
2484 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
2485 | |
---|
2486 | return tdps; |
---|
2487 | } |
---|
2488 | |
---|
2489 | TightDataPointStorageF* SZ_compress_float_2D_MDQ_subblock(float *oriData, double realPrecision, float valueRangeSize, float medianValue_f, |
---|
2490 | size_t r1, size_t r2, size_t s1, size_t s2, size_t e1, size_t e2) |
---|
2491 | { |
---|
2492 | unsigned int quantization_intervals; |
---|
2493 | if(exe_params->optQuantMode==1) |
---|
2494 | { |
---|
2495 | quantization_intervals = optimize_intervals_float_2D_subblock(oriData, realPrecision, r1, r2, s1, s2, e1, e2); |
---|
2496 | updateQuantizationInfo(quantization_intervals); |
---|
2497 | } |
---|
2498 | else |
---|
2499 | quantization_intervals = exe_params->intvCapacity; |
---|
2500 | |
---|
2501 | size_t i,j; |
---|
2502 | int reqLength; |
---|
2503 | float pred1D, pred2D; |
---|
2504 | float diff = 0.0; |
---|
2505 | double itvNum = 0; |
---|
2506 | float *P0, *P1; |
---|
2507 | |
---|
2508 | size_t R1 = e1 - s1 + 1; |
---|
2509 | size_t R2 = e2 - s2 + 1; |
---|
2510 | size_t dataLength = R1*R2; |
---|
2511 | |
---|
2512 | P0 = (float*)malloc(R2*sizeof(float)); |
---|
2513 | memset(P0, 0, R2*sizeof(float)); |
---|
2514 | P1 = (float*)malloc(R2*sizeof(float)); |
---|
2515 | memset(P1, 0, R2*sizeof(float)); |
---|
2516 | |
---|
2517 | float medianValue = medianValue_f; |
---|
2518 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
2519 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
2520 | |
---|
2521 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
2522 | |
---|
2523 | float* spaceFillingValue = oriData; // |
---|
2524 | |
---|
2525 | DynamicIntArray *exactLeadNumArray; |
---|
2526 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
2527 | |
---|
2528 | DynamicByteArray *exactMidByteArray; |
---|
2529 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
2530 | |
---|
2531 | DynamicIntArray *resiBitArray; |
---|
2532 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
2533 | |
---|
2534 | unsigned char preDataBytes[4]; |
---|
2535 | intToBytes_bigEndian(preDataBytes, 0); |
---|
2536 | |
---|
2537 | int reqBytesLength = reqLength/8; |
---|
2538 | int resiBitsLength = reqLength%8; |
---|
2539 | |
---|
2540 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
2541 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
2542 | |
---|
2543 | /* Process Row-s1 data s2*/ |
---|
2544 | size_t gIndex; |
---|
2545 | size_t lIndex; |
---|
2546 | |
---|
2547 | gIndex = s1*r2+s2; |
---|
2548 | lIndex = 0; |
---|
2549 | |
---|
2550 | type[lIndex] = 0; |
---|
2551 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2552 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2553 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2554 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2555 | P1[0] = vce->data; |
---|
2556 | |
---|
2557 | /* Process Row-s1 data s2+1*/ |
---|
2558 | gIndex = s1*r2+(s2+1); |
---|
2559 | lIndex = 1; |
---|
2560 | |
---|
2561 | pred1D = P1[0]; |
---|
2562 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
2563 | |
---|
2564 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2565 | |
---|
2566 | if (itvNum < exe_params->intvCapacity) |
---|
2567 | { |
---|
2568 | if (diff < 0) itvNum = -itvNum; |
---|
2569 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2570 | P1[1] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2571 | } |
---|
2572 | else |
---|
2573 | { |
---|
2574 | type[lIndex] = 0; |
---|
2575 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2576 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2577 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2578 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2579 | P1[1] = vce->data; |
---|
2580 | } |
---|
2581 | |
---|
2582 | /* Process Row-s1 data s2+2 --> data e2 */ |
---|
2583 | for (j = 2; j < R2; j++) |
---|
2584 | { |
---|
2585 | gIndex = s1*r2+(s2+j); |
---|
2586 | lIndex = j; |
---|
2587 | |
---|
2588 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
2589 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
2590 | |
---|
2591 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2592 | |
---|
2593 | if (itvNum < exe_params->intvCapacity) |
---|
2594 | { |
---|
2595 | if (diff < 0) itvNum = -itvNum; |
---|
2596 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2597 | P1[j] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2598 | } |
---|
2599 | else |
---|
2600 | { |
---|
2601 | type[lIndex] = 0; |
---|
2602 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2603 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2604 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2605 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2606 | P1[j] = vce->data; |
---|
2607 | } |
---|
2608 | } |
---|
2609 | |
---|
2610 | /* Process Row-s1+1 --> Row-e1 */ |
---|
2611 | for (i = 1; i < R1; i++) |
---|
2612 | { |
---|
2613 | /* Process row-s1+i data s2 */ |
---|
2614 | gIndex = (s1+i)*r2+s2; |
---|
2615 | lIndex = i*R2; |
---|
2616 | |
---|
2617 | pred1D = P1[0]; |
---|
2618 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
2619 | |
---|
2620 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2621 | |
---|
2622 | if (itvNum < exe_params->intvCapacity) |
---|
2623 | { |
---|
2624 | if (diff < 0) itvNum = -itvNum; |
---|
2625 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2626 | P0[0] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2627 | } |
---|
2628 | else |
---|
2629 | { |
---|
2630 | type[lIndex] = 0; |
---|
2631 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2632 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2633 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2634 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2635 | P0[0] = vce->data; |
---|
2636 | } |
---|
2637 | |
---|
2638 | /* Process row-s1+i data s2+1 --> e2 */ |
---|
2639 | for (j = 1; j < R2; j++) |
---|
2640 | { |
---|
2641 | gIndex = (s1+i)*r2+(s2+j); |
---|
2642 | lIndex = i*R2+j; |
---|
2643 | |
---|
2644 | // printf ("global index = %d, local index = %d\n", gIndex, lIndex); |
---|
2645 | |
---|
2646 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
2647 | |
---|
2648 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
2649 | |
---|
2650 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2651 | |
---|
2652 | if (itvNum < exe_params->intvCapacity) |
---|
2653 | { |
---|
2654 | if (diff < 0) itvNum = -itvNum; |
---|
2655 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2656 | P0[j] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2657 | } |
---|
2658 | else |
---|
2659 | { |
---|
2660 | type[lIndex] = 0; |
---|
2661 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2662 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2663 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2664 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2665 | P0[j] = vce->data; |
---|
2666 | } |
---|
2667 | } |
---|
2668 | |
---|
2669 | float *Pt; |
---|
2670 | Pt = P1; |
---|
2671 | P1 = P0; |
---|
2672 | P0 = Pt; |
---|
2673 | } |
---|
2674 | |
---|
2675 | free(P0); |
---|
2676 | free(P1); |
---|
2677 | size_t exactDataNum = exactLeadNumArray->size; |
---|
2678 | |
---|
2679 | TightDataPointStorageF* tdps; |
---|
2680 | |
---|
2681 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
2682 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
2683 | exactLeadNumArray->array, |
---|
2684 | resiBitArray->array, resiBitArray->size, |
---|
2685 | resiBitsLength, |
---|
2686 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
2687 | |
---|
2688 | //free memory |
---|
2689 | free_DIA(exactLeadNumArray); |
---|
2690 | free_DIA(resiBitArray); |
---|
2691 | free(type); |
---|
2692 | free(vce); |
---|
2693 | free(lce); |
---|
2694 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
2695 | |
---|
2696 | return tdps; |
---|
2697 | } |
---|
2698 | |
---|
2699 | TightDataPointStorageF* SZ_compress_float_3D_MDQ_subblock(float *oriData, double realPrecision, float valueRangeSize, float medianValue_f, |
---|
2700 | size_t r1, size_t r2, size_t r3, size_t s1, size_t s2, size_t s3, size_t e1, size_t e2, size_t e3) |
---|
2701 | { |
---|
2702 | unsigned int quantization_intervals; |
---|
2703 | if(exe_params->optQuantMode==1) |
---|
2704 | { |
---|
2705 | quantization_intervals = optimize_intervals_float_3D_subblock(oriData, realPrecision, r1, r2, r3, s1, s2, s3, e1, e2, e3); |
---|
2706 | updateQuantizationInfo(quantization_intervals); |
---|
2707 | } |
---|
2708 | else |
---|
2709 | quantization_intervals = exe_params->intvCapacity; |
---|
2710 | |
---|
2711 | size_t i,j,k; |
---|
2712 | int reqLength; |
---|
2713 | float pred1D, pred2D, pred3D; |
---|
2714 | float diff = 0.0; |
---|
2715 | double itvNum = 0; |
---|
2716 | float *P0, *P1; |
---|
2717 | |
---|
2718 | size_t R1 = e1 - s1 + 1; |
---|
2719 | size_t R2 = e2 - s2 + 1; |
---|
2720 | size_t R3 = e3 - s3 + 1; |
---|
2721 | size_t dataLength = R1*R2*R3; |
---|
2722 | |
---|
2723 | size_t r23 = r2*r3; |
---|
2724 | size_t R23 = R2*R3; |
---|
2725 | |
---|
2726 | P0 = (float*)malloc(R23*sizeof(float)); |
---|
2727 | P1 = (float*)malloc(R23*sizeof(float)); |
---|
2728 | |
---|
2729 | float medianValue = medianValue_f; |
---|
2730 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
2731 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
2732 | |
---|
2733 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
2734 | //type[dataLength]=0; |
---|
2735 | |
---|
2736 | float* spaceFillingValue = oriData; // |
---|
2737 | |
---|
2738 | DynamicIntArray *exactLeadNumArray; |
---|
2739 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
2740 | |
---|
2741 | DynamicByteArray *exactMidByteArray; |
---|
2742 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
2743 | |
---|
2744 | DynamicIntArray *resiBitArray; |
---|
2745 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
2746 | |
---|
2747 | unsigned char preDataBytes[4]; |
---|
2748 | intToBytes_bigEndian(preDataBytes, 0); |
---|
2749 | |
---|
2750 | int reqBytesLength = reqLength/8; |
---|
2751 | int resiBitsLength = reqLength%8; |
---|
2752 | |
---|
2753 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
2754 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
2755 | |
---|
2756 | |
---|
2757 | /////////////////////////// Process layer-s1 /////////////////////////// |
---|
2758 | /* Process Row-s2 data s3*/ |
---|
2759 | size_t gIndex; //global index |
---|
2760 | size_t lIndex; //local index |
---|
2761 | size_t index2D; //local 2D index |
---|
2762 | |
---|
2763 | gIndex = s1*r23+s2*r3+s3; |
---|
2764 | lIndex = 0; |
---|
2765 | index2D = 0; |
---|
2766 | |
---|
2767 | type[lIndex] = 0; |
---|
2768 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2769 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2770 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2771 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2772 | P1[index2D] = vce->data; |
---|
2773 | |
---|
2774 | /* Process Row-s2 data s3+1*/ |
---|
2775 | gIndex = s1*r23+s2*r3+s3+1; |
---|
2776 | lIndex = 1; |
---|
2777 | index2D = 1; |
---|
2778 | |
---|
2779 | pred1D = P1[index2D-1]; |
---|
2780 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
2781 | |
---|
2782 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2783 | |
---|
2784 | if (itvNum < exe_params->intvCapacity) |
---|
2785 | { |
---|
2786 | if (diff < 0) itvNum = -itvNum; |
---|
2787 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2788 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2789 | } |
---|
2790 | else |
---|
2791 | { |
---|
2792 | type[lIndex] = 0; |
---|
2793 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2794 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2795 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2796 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2797 | P1[index2D] = vce->data; |
---|
2798 | } |
---|
2799 | |
---|
2800 | /* Process Row-s2 data s3+2 --> data e3 */ |
---|
2801 | for (j = 2; j < R3; j++) |
---|
2802 | { |
---|
2803 | gIndex = s1*r23+s2*r3+s3+j; |
---|
2804 | lIndex = j; |
---|
2805 | index2D = j; |
---|
2806 | |
---|
2807 | pred1D = 2*P1[index2D-1] - P1[index2D-2]; |
---|
2808 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
2809 | |
---|
2810 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2811 | |
---|
2812 | if (itvNum < exe_params->intvCapacity) |
---|
2813 | { |
---|
2814 | if (diff < 0) itvNum = -itvNum; |
---|
2815 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2816 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2817 | } |
---|
2818 | else |
---|
2819 | { |
---|
2820 | type[lIndex] = 0; |
---|
2821 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2822 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2823 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2824 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2825 | P1[index2D] = vce->data; |
---|
2826 | } |
---|
2827 | } |
---|
2828 | |
---|
2829 | /* Process Row-s2+1 --> Row-e2 */ |
---|
2830 | for (i = 1; i < R2; i++) |
---|
2831 | { |
---|
2832 | /* Process row-s2+i data s3 */ |
---|
2833 | gIndex = s1*r23+(s2+i)*r3+s3; |
---|
2834 | lIndex = i*R3; |
---|
2835 | index2D = i*R3; |
---|
2836 | |
---|
2837 | pred1D = P1[index2D-R3]; |
---|
2838 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
2839 | |
---|
2840 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2841 | |
---|
2842 | if (itvNum < exe_params->intvCapacity) |
---|
2843 | { |
---|
2844 | if (diff < 0) itvNum = -itvNum; |
---|
2845 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2846 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2847 | } |
---|
2848 | else |
---|
2849 | { |
---|
2850 | type[lIndex] = 0; |
---|
2851 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2852 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2853 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2854 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2855 | P1[index2D] = vce->data; |
---|
2856 | } |
---|
2857 | |
---|
2858 | /* Process row-s2+i data s3+1 --> data e3*/ |
---|
2859 | for (j = 1; j < R3; j++) |
---|
2860 | { |
---|
2861 | gIndex = s1*r23+(s2+i)*r3+s3+j; |
---|
2862 | lIndex = i*R3+j; |
---|
2863 | index2D = i*R3+j; |
---|
2864 | |
---|
2865 | pred2D = P1[index2D-1] + P1[index2D-R3] - P1[index2D-R3-1]; |
---|
2866 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
2867 | |
---|
2868 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2869 | |
---|
2870 | if (itvNum < exe_params->intvCapacity) |
---|
2871 | { |
---|
2872 | if (diff < 0) itvNum = -itvNum; |
---|
2873 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2874 | P1[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2875 | } |
---|
2876 | else |
---|
2877 | { |
---|
2878 | type[lIndex] = 0; |
---|
2879 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2880 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2881 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2882 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2883 | P1[index2D] = vce->data; |
---|
2884 | } |
---|
2885 | } |
---|
2886 | } |
---|
2887 | |
---|
2888 | |
---|
2889 | /////////////////////////// Process layer-s1+1 --> layer-e1 /////////////////////////// |
---|
2890 | |
---|
2891 | for (k = 1; k < R1; k++) |
---|
2892 | { |
---|
2893 | /* Process Row-s2 data s3*/ |
---|
2894 | gIndex = (s1+k)*r23+s2*r3+s3; |
---|
2895 | lIndex = k*R23; |
---|
2896 | index2D = 0; |
---|
2897 | |
---|
2898 | pred1D = P1[index2D]; |
---|
2899 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
2900 | |
---|
2901 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2902 | |
---|
2903 | if (itvNum < exe_params->intvCapacity) |
---|
2904 | { |
---|
2905 | if (diff < 0) itvNum = -itvNum; |
---|
2906 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2907 | P0[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2908 | } |
---|
2909 | else |
---|
2910 | { |
---|
2911 | type[lIndex] = 0; |
---|
2912 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2913 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2914 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2915 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2916 | P0[index2D] = vce->data; |
---|
2917 | } |
---|
2918 | |
---|
2919 | /* Process Row-s2 data s3+1 --> data e3 */ |
---|
2920 | for (j = 1; j < R3; j++) |
---|
2921 | { |
---|
2922 | gIndex = (s1+k)*r23+s2*r3+s3+j; |
---|
2923 | lIndex = k*R23+j; |
---|
2924 | index2D = j; |
---|
2925 | |
---|
2926 | pred2D = P0[index2D-1] + P1[index2D] - P1[index2D-1]; |
---|
2927 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
2928 | |
---|
2929 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2930 | |
---|
2931 | if (itvNum < exe_params->intvCapacity) |
---|
2932 | { |
---|
2933 | if (diff < 0) itvNum = -itvNum; |
---|
2934 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2935 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2936 | } |
---|
2937 | else |
---|
2938 | { |
---|
2939 | type[lIndex] = 0; |
---|
2940 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2941 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2942 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2943 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2944 | P0[index2D] = vce->data; |
---|
2945 | } |
---|
2946 | } |
---|
2947 | |
---|
2948 | /* Process Row-s2+1 --> Row-e2 */ |
---|
2949 | for (i = 1; i < R2; i++) |
---|
2950 | { |
---|
2951 | /* Process Row-s2+i data s3 */ |
---|
2952 | gIndex = (s1+k)*r23+(s2+i)*r3+s3; |
---|
2953 | lIndex = k*R23+i*R3; |
---|
2954 | index2D = i*R3; |
---|
2955 | |
---|
2956 | pred2D = P0[index2D-R3] + P1[index2D] - P1[index2D-R3]; |
---|
2957 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
2958 | |
---|
2959 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2960 | |
---|
2961 | if (itvNum < exe_params->intvCapacity) |
---|
2962 | { |
---|
2963 | if (diff < 0) itvNum = -itvNum; |
---|
2964 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2965 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2966 | } |
---|
2967 | else |
---|
2968 | { |
---|
2969 | type[lIndex] = 0; |
---|
2970 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
2971 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
2972 | memcpy(preDataBytes,vce->curBytes,4); |
---|
2973 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
2974 | P0[index2D] = vce->data; |
---|
2975 | } |
---|
2976 | |
---|
2977 | /* Process Row-s2+i data s3+1 --> data e3 */ |
---|
2978 | for (j = 1; j < R3; j++) |
---|
2979 | { |
---|
2980 | gIndex = (s1+k)*r23+(s2+i)*r3+s3+j; |
---|
2981 | lIndex = k*R23+i*R3+j; |
---|
2982 | index2D = i*R3+j; |
---|
2983 | |
---|
2984 | // printf ("global index = %d, local index = %d\n", gIndex, lIndex); |
---|
2985 | |
---|
2986 | pred3D = P0[index2D-1] + P0[index2D-R3]+ P1[index2D] - P0[index2D-R3-1] - P1[index2D-R3] - P1[index2D-1] + P1[index2D-R3-1]; |
---|
2987 | diff = spaceFillingValue[gIndex] - pred3D; |
---|
2988 | |
---|
2989 | itvNum = fabs(diff)/realPrecision + 1; |
---|
2990 | |
---|
2991 | if (itvNum < exe_params->intvCapacity) |
---|
2992 | { |
---|
2993 | if (diff < 0) itvNum = -itvNum; |
---|
2994 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
2995 | P0[index2D] = pred3D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
2996 | } |
---|
2997 | else |
---|
2998 | { |
---|
2999 | type[lIndex] = 0; |
---|
3000 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
3001 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
3002 | memcpy(preDataBytes,vce->curBytes,4); |
---|
3003 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
3004 | P0[index2D] = vce->data; |
---|
3005 | } |
---|
3006 | } |
---|
3007 | } |
---|
3008 | |
---|
3009 | float *Pt; |
---|
3010 | Pt = P1; |
---|
3011 | P1 = P0; |
---|
3012 | P0 = Pt; |
---|
3013 | } |
---|
3014 | |
---|
3015 | free(P0); |
---|
3016 | free(P1); |
---|
3017 | size_t exactDataNum = exactLeadNumArray->size; |
---|
3018 | |
---|
3019 | TightDataPointStorageF* tdps; |
---|
3020 | |
---|
3021 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
3022 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
3023 | exactLeadNumArray->array, |
---|
3024 | resiBitArray->array, resiBitArray->size, |
---|
3025 | resiBitsLength, |
---|
3026 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
3027 | |
---|
3028 | //free memory |
---|
3029 | free_DIA(exactLeadNumArray); |
---|
3030 | free_DIA(resiBitArray); |
---|
3031 | free(type); |
---|
3032 | free(vce); |
---|
3033 | free(lce); |
---|
3034 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
3035 | |
---|
3036 | return tdps; |
---|
3037 | } |
---|
3038 | |
---|
3039 | TightDataPointStorageF* SZ_compress_float_4D_MDQ_subblock(float *oriData, double realPrecision, float valueRangeSize, float medianValue_f, |
---|
3040 | size_t r1, size_t r2, size_t r3, size_t r4, size_t s1, size_t s2, size_t s3, size_t s4, size_t e1, size_t e2, size_t e3, size_t e4) |
---|
3041 | { |
---|
3042 | unsigned int quantization_intervals; |
---|
3043 | if(exe_params->optQuantMode==1) |
---|
3044 | { |
---|
3045 | quantization_intervals = optimize_intervals_float_4D_subblock(oriData, realPrecision, r1, r2, r3, r4, s1, s2, s3, s4, e1, e2, e3, e4); |
---|
3046 | updateQuantizationInfo(quantization_intervals); |
---|
3047 | } |
---|
3048 | else |
---|
3049 | quantization_intervals = exe_params->intvCapacity; |
---|
3050 | |
---|
3051 | size_t i,j,k; |
---|
3052 | int reqLength; |
---|
3053 | float pred1D, pred2D, pred3D; |
---|
3054 | float diff = 0.0; |
---|
3055 | double itvNum = 0; |
---|
3056 | float *P0, *P1; |
---|
3057 | |
---|
3058 | size_t R1 = e1 - s1 + 1; |
---|
3059 | size_t R2 = e2 - s2 + 1; |
---|
3060 | size_t R3 = e3 - s3 + 1; |
---|
3061 | size_t R4 = e4 - s4 + 1; |
---|
3062 | |
---|
3063 | size_t dataLength = R1*R2*R3*R4; |
---|
3064 | |
---|
3065 | size_t r34 = r3*r4; |
---|
3066 | size_t r234 = r2*r3*r4; |
---|
3067 | size_t R34 = R3*R4; |
---|
3068 | size_t R234 = R2*R3*R4; |
---|
3069 | |
---|
3070 | P0 = (float*)malloc(R34*sizeof(float)); |
---|
3071 | P1 = (float*)malloc(R34*sizeof(float)); |
---|
3072 | |
---|
3073 | float medianValue = medianValue_f; |
---|
3074 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
3075 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
3076 | |
---|
3077 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
3078 | |
---|
3079 | float* spaceFillingValue = oriData; // |
---|
3080 | |
---|
3081 | DynamicIntArray *exactLeadNumArray; |
---|
3082 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
3083 | |
---|
3084 | DynamicByteArray *exactMidByteArray; |
---|
3085 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
3086 | |
---|
3087 | DynamicIntArray *resiBitArray; |
---|
3088 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
3089 | |
---|
3090 | unsigned char preDataBytes[4]; |
---|
3091 | intToBytes_bigEndian(preDataBytes, 0); |
---|
3092 | |
---|
3093 | int reqBytesLength = reqLength/8; |
---|
3094 | int resiBitsLength = reqLength%8; |
---|
3095 | |
---|
3096 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
3097 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
3098 | |
---|
3099 | |
---|
3100 | size_t l; |
---|
3101 | for (l = 0; l < R1; l++) |
---|
3102 | { |
---|
3103 | |
---|
3104 | /////////////////////////// Process layer-s2 /////////////////////////// |
---|
3105 | /* Process Row-s3 data s4*/ |
---|
3106 | size_t gIndex; //global index |
---|
3107 | size_t lIndex; //local index |
---|
3108 | size_t index2D; //local 2D index |
---|
3109 | |
---|
3110 | gIndex = (s1+l)*r234+s2*r34+s3*r4+s4; |
---|
3111 | lIndex = l*R234; |
---|
3112 | index2D = 0; |
---|
3113 | |
---|
3114 | type[lIndex] = 0; |
---|
3115 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
3116 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
3117 | memcpy(preDataBytes,vce->curBytes,4); |
---|
3118 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
3119 | P1[index2D] = vce->data; |
---|
3120 | |
---|
3121 | /* Process Row-s3 data s4+1*/ |
---|
3122 | gIndex = (s1+l)*r234+s2*r34+s3*r4+s4+1; |
---|
3123 | lIndex = l*R234+1; |
---|
3124 | index2D = 1; |
---|
3125 | |
---|
3126 | pred1D = P1[index2D-1]; |
---|
3127 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
3128 | |
---|
3129 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3130 | |
---|
3131 | if (itvNum < exe_params->intvCapacity) |
---|
3132 | { |
---|
3133 | if (diff < 0) itvNum = -itvNum; |
---|
3134 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3135 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
3136 | } |
---|
3137 | else |
---|
3138 | { |
---|
3139 | type[lIndex] = 0; |
---|
3140 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
3141 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
3142 | memcpy(preDataBytes,vce->curBytes,4); |
---|
3143 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
3144 | P1[index2D] = vce->data; |
---|
3145 | } |
---|
3146 | |
---|
3147 | /* Process Row-s3 data s4+2 --> data e4 */ |
---|
3148 | for (j = 2; j < R4; j++) |
---|
3149 | { |
---|
3150 | gIndex = (s1+l)*r234+s2*r34+s3*r4+s4+j; |
---|
3151 | lIndex = l*R234+j; |
---|
3152 | index2D = j; |
---|
3153 | |
---|
3154 | pred1D = 2*P1[index2D-1] - P1[index2D-2]; |
---|
3155 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
3156 | |
---|
3157 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3158 | |
---|
3159 | if (itvNum < exe_params->intvCapacity) |
---|
3160 | { |
---|
3161 | if (diff < 0) itvNum = -itvNum; |
---|
3162 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3163 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
3164 | } |
---|
3165 | else |
---|
3166 | { |
---|
3167 | type[lIndex] = 0; |
---|
3168 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
3169 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
3170 | memcpy(preDataBytes,vce->curBytes,4); |
---|
3171 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
3172 | P1[index2D] = vce->data; |
---|
3173 | } |
---|
3174 | } |
---|
3175 | |
---|
3176 | /* Process Row-s3+1 --> Row-e3 */ |
---|
3177 | for (i = 1; i < R3; i++) |
---|
3178 | { |
---|
3179 | /* Process row-s2+i data s3 */ |
---|
3180 | gIndex = (s1+l)*r234+s2*r34+(s3+i)*r4+s4; |
---|
3181 | lIndex = l*R234+i*R4; |
---|
3182 | index2D = i*R4; |
---|
3183 | |
---|
3184 | pred1D = P1[index2D-R4]; |
---|
3185 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
3186 | |
---|
3187 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3188 | |
---|
3189 | if (itvNum < exe_params->intvCapacity) |
---|
3190 | { |
---|
3191 | if (diff < 0) itvNum = -itvNum; |
---|
3192 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3193 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
3194 | } |
---|
3195 | else |
---|
3196 | { |
---|
3197 | type[lIndex] = 0; |
---|
3198 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
3199 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
3200 | memcpy(preDataBytes,vce->curBytes,4); |
---|
3201 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
3202 | P1[index2D] = vce->data; |
---|
3203 | } |
---|
3204 | |
---|
3205 | /* Process row-s3+i data s4+1 --> data e4*/ |
---|
3206 | for (j = 1; j < R4; j++) |
---|
3207 | { |
---|
3208 | gIndex = (s1+l)*r234+s2*r34+(s3+i)*r4+s4+j; |
---|
3209 | lIndex = l*R234+i*R4+j; |
---|
3210 | index2D = i*R4+j; |
---|
3211 | |
---|
3212 | pred2D = P1[index2D-1] + P1[index2D-R4] - P1[index2D-R4-1]; |
---|
3213 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
3214 | |
---|
3215 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3216 | |
---|
3217 | if (itvNum < exe_params->intvCapacity) |
---|
3218 | { |
---|
3219 | if (diff < 0) itvNum = -itvNum; |
---|
3220 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3221 | P1[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
3222 | } |
---|
3223 | else |
---|
3224 | { |
---|
3225 | type[lIndex] = 0; |
---|
3226 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
3227 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
3228 | memcpy(preDataBytes,vce->curBytes,4); |
---|
3229 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
3230 | P1[index2D] = vce->data; |
---|
3231 | } |
---|
3232 | } |
---|
3233 | } |
---|
3234 | |
---|
3235 | |
---|
3236 | /////////////////////////// Process layer-s2+1 --> layer-e2 /////////////////////////// |
---|
3237 | |
---|
3238 | for (k = 1; k < R2; k++) |
---|
3239 | { |
---|
3240 | /* Process Row-s3 data s4*/ |
---|
3241 | gIndex = (s1+l)*r234+(s2+k)*r34+s3*r4+s4; |
---|
3242 | lIndex = l*R234+k*R34; |
---|
3243 | index2D = 0; |
---|
3244 | |
---|
3245 | pred1D = P1[index2D]; |
---|
3246 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
3247 | |
---|
3248 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3249 | |
---|
3250 | if (itvNum < exe_params->intvCapacity) |
---|
3251 | { |
---|
3252 | if (diff < 0) itvNum = -itvNum; |
---|
3253 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3254 | P0[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
3255 | } |
---|
3256 | else |
---|
3257 | { |
---|
3258 | type[lIndex] = 0; |
---|
3259 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
3260 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
3261 | memcpy(preDataBytes,vce->curBytes,4); |
---|
3262 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
3263 | P0[index2D] = vce->data; |
---|
3264 | } |
---|
3265 | |
---|
3266 | /* Process Row-s3 data s4+1 --> data e4 */ |
---|
3267 | for (j = 1; j < R4; j++) |
---|
3268 | { |
---|
3269 | gIndex = (s1+l)*r234+(s2+k)*r34+s3*r4+s4+j; |
---|
3270 | lIndex = l*R234+k*R34+j; |
---|
3271 | index2D = j; |
---|
3272 | |
---|
3273 | pred2D = P0[index2D-1] + P1[index2D] - P1[index2D-1]; |
---|
3274 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
3275 | |
---|
3276 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3277 | |
---|
3278 | if (itvNum < exe_params->intvCapacity) |
---|
3279 | { |
---|
3280 | if (diff < 0) itvNum = -itvNum; |
---|
3281 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3282 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
3283 | } |
---|
3284 | else |
---|
3285 | { |
---|
3286 | type[lIndex] = 0; |
---|
3287 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
3288 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
3289 | memcpy(preDataBytes,vce->curBytes,4); |
---|
3290 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
3291 | P0[index2D] = vce->data; |
---|
3292 | } |
---|
3293 | } |
---|
3294 | |
---|
3295 | /* Process Row-s3+1 --> Row-e3 */ |
---|
3296 | for (i = 1; i < R3; i++) |
---|
3297 | { |
---|
3298 | /* Process Row-s3+i data s4 */ |
---|
3299 | gIndex = (s1+l)*r234+(s2+k)*r34+(s3+i)*r4+s4; |
---|
3300 | lIndex = l*R234+k*R34+i*R4; |
---|
3301 | index2D = i*R4; |
---|
3302 | |
---|
3303 | pred2D = P0[index2D-R4] + P1[index2D] - P1[index2D-R4]; |
---|
3304 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
3305 | |
---|
3306 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3307 | |
---|
3308 | if (itvNum < exe_params->intvCapacity) |
---|
3309 | { |
---|
3310 | if (diff < 0) itvNum = -itvNum; |
---|
3311 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3312 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
3313 | } |
---|
3314 | else |
---|
3315 | { |
---|
3316 | type[lIndex] = 0; |
---|
3317 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
3318 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
3319 | memcpy(preDataBytes,vce->curBytes,4); |
---|
3320 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
3321 | P0[index2D] = vce->data; |
---|
3322 | } |
---|
3323 | |
---|
3324 | /* Process Row-s3+i data s4+1 --> data e4 */ |
---|
3325 | for (j = 1; j < R4; j++) |
---|
3326 | { |
---|
3327 | gIndex = (s1+l)*r234+(s2+k)*r34+(s3+i)*r4+s4+j; |
---|
3328 | lIndex = l*R234+k*R34+i*R4+j; |
---|
3329 | index2D = i*R4+j; |
---|
3330 | |
---|
3331 | // printf ("global index = %d, local index = %d\n", gIndex, lIndex); |
---|
3332 | |
---|
3333 | pred3D = P0[index2D-1] + P0[index2D-R4]+ P1[index2D] - P0[index2D-R4-1] - P1[index2D-R4] - P1[index2D-1] + P1[index2D-R4-1]; |
---|
3334 | diff = spaceFillingValue[gIndex] - pred3D; |
---|
3335 | |
---|
3336 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3337 | |
---|
3338 | if (itvNum < exe_params->intvCapacity) |
---|
3339 | { |
---|
3340 | if (diff < 0) itvNum = -itvNum; |
---|
3341 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3342 | P0[index2D] = pred3D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
3343 | } |
---|
3344 | else |
---|
3345 | { |
---|
3346 | type[lIndex] = 0; |
---|
3347 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
3348 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
3349 | memcpy(preDataBytes,vce->curBytes,4); |
---|
3350 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
3351 | P0[index2D] = vce->data; |
---|
3352 | } |
---|
3353 | } |
---|
3354 | } |
---|
3355 | |
---|
3356 | float *Pt; |
---|
3357 | Pt = P1; |
---|
3358 | P1 = P0; |
---|
3359 | P0 = Pt; |
---|
3360 | } |
---|
3361 | |
---|
3362 | } |
---|
3363 | |
---|
3364 | free(P0); |
---|
3365 | free(P1); |
---|
3366 | size_t exactDataNum = exactLeadNumArray->size; |
---|
3367 | |
---|
3368 | TightDataPointStorageF* tdps; |
---|
3369 | |
---|
3370 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
3371 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
3372 | exactLeadNumArray->array, |
---|
3373 | resiBitArray->array, resiBitArray->size, |
---|
3374 | resiBitsLength, |
---|
3375 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
3376 | |
---|
3377 | //free memory |
---|
3378 | free_DIA(exactLeadNumArray); |
---|
3379 | free_DIA(resiBitArray); |
---|
3380 | free(type); |
---|
3381 | free(vce); |
---|
3382 | free(lce); |
---|
3383 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
3384 | |
---|
3385 | return tdps; |
---|
3386 | } |
---|
3387 | |
---|
3388 | unsigned int optimize_intervals_float_3D_opt(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision) |
---|
3389 | { |
---|
3390 | size_t i; |
---|
3391 | size_t radiusIndex; |
---|
3392 | size_t r23=r2*r3; |
---|
3393 | float pred_value = 0, pred_err; |
---|
3394 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
3395 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
3396 | size_t totalSampleSize = 0; |
---|
3397 | |
---|
3398 | size_t offset_count = confparams_cpr->sampleDistance - 2; // count r3 offset |
---|
3399 | size_t offset_count_2; |
---|
3400 | float * data_pos = oriData + r23 + r3 + offset_count; |
---|
3401 | size_t n1_count = 1, n2_count = 1; // count i,j sum |
---|
3402 | size_t len = r1 * r2 * r3; |
---|
3403 | while(data_pos - oriData < len){ |
---|
3404 | totalSampleSize++; |
---|
3405 | pred_value = data_pos[-1] + data_pos[-r3] + data_pos[-r23] - data_pos[-1-r23] - data_pos[-r3-1] - data_pos[-r3-r23] + data_pos[-r3-r23-1]; |
---|
3406 | pred_err = fabs(pred_value - *data_pos); |
---|
3407 | radiusIndex = (pred_err/realPrecision+1)/2; |
---|
3408 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
3409 | { |
---|
3410 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
3411 | } |
---|
3412 | intervals[radiusIndex]++; |
---|
3413 | offset_count += confparams_cpr->sampleDistance; |
---|
3414 | if(offset_count >= r3){ |
---|
3415 | n2_count ++; |
---|
3416 | if(n2_count == r2){ |
---|
3417 | n1_count ++; |
---|
3418 | n2_count = 1; |
---|
3419 | data_pos += r3; |
---|
3420 | } |
---|
3421 | offset_count_2 = (n1_count + n2_count) % confparams_cpr->sampleDistance; |
---|
3422 | data_pos += (r3 + confparams_cpr->sampleDistance - offset_count) + (confparams_cpr->sampleDistance - offset_count_2); |
---|
3423 | offset_count = (confparams_cpr->sampleDistance - offset_count_2); |
---|
3424 | if(offset_count == 0) offset_count ++; |
---|
3425 | } |
---|
3426 | else data_pos += confparams_cpr->sampleDistance; |
---|
3427 | } |
---|
3428 | //compute the appropriate number |
---|
3429 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
3430 | size_t sum = 0; |
---|
3431 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
3432 | { |
---|
3433 | sum += intervals[i]; |
---|
3434 | if(sum>targetCount) |
---|
3435 | break; |
---|
3436 | } |
---|
3437 | if(i>=confparams_cpr->maxRangeRadius) |
---|
3438 | i = confparams_cpr->maxRangeRadius-1; |
---|
3439 | unsigned int accIntervals = 2*(i+1); |
---|
3440 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
3441 | |
---|
3442 | if(powerOf2<32) |
---|
3443 | powerOf2 = 32; |
---|
3444 | free(intervals); |
---|
3445 | return powerOf2; |
---|
3446 | } |
---|
3447 | |
---|
3448 | size_t SZ_compress_float_3D_MDQ_RA_block(float * block_ori_data, float * mean, size_t dim_0, size_t dim_1, size_t dim_2, size_t block_dim_0, size_t block_dim_1, size_t block_dim_2, double realPrecision, float * P0, float * P1, int * type, float * unpredictable_data){ |
---|
3449 | |
---|
3450 | size_t dim0_offset = dim_1 * dim_2; |
---|
3451 | size_t dim1_offset = dim_2; |
---|
3452 | |
---|
3453 | // data_pos = block_ori_data; |
---|
3454 | // for(size_t i=0; i<block_dim_0; i++){ |
---|
3455 | // for(size_t j=0; j<block_dim_1; j++){ |
---|
3456 | // for(size_t k=0; k<block_dim_2; k++){ |
---|
3457 | // sum += *data_pos; |
---|
3458 | // data_pos ++; |
---|
3459 | // } |
---|
3460 | // data_pos += dim1_offset - block_dim_2; |
---|
3461 | // } |
---|
3462 | // data_pos += dim0_offset - block_dim_1 * dim1_offset; |
---|
3463 | // } |
---|
3464 | // size_t num_elements = block_dim_0 * block_dim_1 * block_dim_2; |
---|
3465 | // if(num_elements > 0) mean[0] = sum / num_elements; |
---|
3466 | // else mean[0] = 0.0; |
---|
3467 | mean[0] = block_ori_data[0]; |
---|
3468 | |
---|
3469 | size_t unpredictable_count = 0; |
---|
3470 | size_t r1, r2, r3; |
---|
3471 | r1 = block_dim_0; |
---|
3472 | r2 = block_dim_1; |
---|
3473 | r3 = block_dim_2; |
---|
3474 | |
---|
3475 | float * cur_data_pos = block_ori_data; |
---|
3476 | float curData; |
---|
3477 | float pred1D, pred2D, pred3D; |
---|
3478 | double itvNum; |
---|
3479 | double diff; |
---|
3480 | size_t i, j, k; |
---|
3481 | size_t r23 = r2*r3; |
---|
3482 | // Process Row-0 data 0 |
---|
3483 | pred1D = mean[0]; |
---|
3484 | curData = *cur_data_pos; |
---|
3485 | diff = curData - pred1D; |
---|
3486 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3487 | if (itvNum < exe_params->intvCapacity){ |
---|
3488 | if (diff < 0) itvNum = -itvNum; |
---|
3489 | type[0] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3490 | P1[0] = pred1D + 2 * (type[0] - exe_params->intvRadius) * realPrecision; |
---|
3491 | //ganrantee comporession error against the case of machine-epsilon |
---|
3492 | if(fabs(curData-P1[0])>realPrecision){ |
---|
3493 | type[0] = 0; |
---|
3494 | P1[0] = curData; |
---|
3495 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3496 | } |
---|
3497 | } |
---|
3498 | else{ |
---|
3499 | type[0] = 0; |
---|
3500 | P1[0] = curData; |
---|
3501 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3502 | } |
---|
3503 | |
---|
3504 | /* Process Row-0 data 1*/ |
---|
3505 | pred1D = P1[0]; |
---|
3506 | curData = cur_data_pos[1]; |
---|
3507 | diff = curData - pred1D; |
---|
3508 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3509 | if (itvNum < exe_params->intvCapacity){ |
---|
3510 | if (diff < 0) itvNum = -itvNum; |
---|
3511 | type[1] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3512 | P1[1] = pred1D + 2 * (type[1] - exe_params->intvRadius) * realPrecision; |
---|
3513 | //ganrantee comporession error against the case of machine-epsilon |
---|
3514 | if(fabs(curData-P1[1])>realPrecision){ |
---|
3515 | type[1] = 0; |
---|
3516 | P1[1] = curData; |
---|
3517 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3518 | } |
---|
3519 | } |
---|
3520 | else{ |
---|
3521 | type[1] = 0; |
---|
3522 | P1[1] = curData; |
---|
3523 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3524 | } |
---|
3525 | /* Process Row-0 data 2 --> data r3-1 */ |
---|
3526 | for (j = 2; j < r3; j++){ |
---|
3527 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
3528 | curData = cur_data_pos[j]; |
---|
3529 | diff = curData - pred1D; |
---|
3530 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3531 | if (itvNum < exe_params->intvCapacity){ |
---|
3532 | if (diff < 0) itvNum = -itvNum; |
---|
3533 | type[j] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3534 | P1[j] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
3535 | //ganrantee comporession error against the case of machine-epsilon |
---|
3536 | if(fabs(curData-P1[j])>realPrecision){ |
---|
3537 | type[j] = 0; |
---|
3538 | P1[j] = curData; |
---|
3539 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3540 | } |
---|
3541 | } |
---|
3542 | else{ |
---|
3543 | type[j] = 0; |
---|
3544 | P1[j] = curData; |
---|
3545 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3546 | } |
---|
3547 | } |
---|
3548 | cur_data_pos += dim1_offset; |
---|
3549 | |
---|
3550 | /* Process Row-1 --> Row-r2-1 */ |
---|
3551 | size_t index; |
---|
3552 | for (i = 1; i < r2; i++) |
---|
3553 | { |
---|
3554 | /* Process row-i data 0 */ |
---|
3555 | index = i*r3; |
---|
3556 | pred1D = P1[index-r3]; |
---|
3557 | curData = *cur_data_pos; |
---|
3558 | diff = curData - pred1D; |
---|
3559 | |
---|
3560 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3561 | |
---|
3562 | if (itvNum < exe_params->intvCapacity) |
---|
3563 | { |
---|
3564 | if (diff < 0) itvNum = -itvNum; |
---|
3565 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3566 | P1[index] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
3567 | |
---|
3568 | //ganrantee comporession error against the case of machine-epsilon |
---|
3569 | if(fabs(curData-P1[index])>realPrecision) |
---|
3570 | { |
---|
3571 | type[index] = 0; |
---|
3572 | P1[index] = curData; |
---|
3573 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3574 | } |
---|
3575 | } |
---|
3576 | else |
---|
3577 | { |
---|
3578 | type[index] = 0; |
---|
3579 | P1[index] = curData; |
---|
3580 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3581 | } |
---|
3582 | |
---|
3583 | /* Process row-i data 1 --> data r3-1*/ |
---|
3584 | for (j = 1; j < r3; j++) |
---|
3585 | { |
---|
3586 | index = i*r3+j; |
---|
3587 | pred2D = P1[index-1] + P1[index-r3] - P1[index-r3-1]; |
---|
3588 | |
---|
3589 | curData = cur_data_pos[j]; |
---|
3590 | diff = curData - pred2D; |
---|
3591 | |
---|
3592 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3593 | |
---|
3594 | if (itvNum < exe_params->intvCapacity) |
---|
3595 | { |
---|
3596 | if (diff < 0) itvNum = -itvNum; |
---|
3597 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3598 | P1[index] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
3599 | |
---|
3600 | //ganrantee comporession error against the case of machine-epsilon |
---|
3601 | if(fabs(curData-P1[index])>realPrecision) |
---|
3602 | { |
---|
3603 | type[index] = 0; |
---|
3604 | P1[index] = curData; |
---|
3605 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3606 | } |
---|
3607 | } |
---|
3608 | else |
---|
3609 | { |
---|
3610 | type[index] = 0; |
---|
3611 | P1[index] = curData; |
---|
3612 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3613 | } |
---|
3614 | } |
---|
3615 | cur_data_pos += dim1_offset; |
---|
3616 | } |
---|
3617 | cur_data_pos += dim0_offset - r2 * dim1_offset; |
---|
3618 | |
---|
3619 | /////////////////////////// Process layer-1 --> layer-r1-1 /////////////////////////// |
---|
3620 | |
---|
3621 | for (k = 1; k < r1; k++) |
---|
3622 | { |
---|
3623 | /* Process Row-0 data 0*/ |
---|
3624 | index = k*r23; |
---|
3625 | pred1D = P1[0]; |
---|
3626 | curData = *cur_data_pos; |
---|
3627 | diff = curData - pred1D; |
---|
3628 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3629 | if (itvNum < exe_params->intvCapacity) |
---|
3630 | { |
---|
3631 | if (diff < 0) itvNum = -itvNum; |
---|
3632 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3633 | P0[0] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
3634 | //ganrantee comporession error against the case of machine-epsilon |
---|
3635 | if(fabs(curData-P0[0])>realPrecision) |
---|
3636 | { |
---|
3637 | type[index] = 0; |
---|
3638 | P0[0] = curData; |
---|
3639 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3640 | } |
---|
3641 | } |
---|
3642 | else |
---|
3643 | { |
---|
3644 | type[index] = 0; |
---|
3645 | P0[0] = curData; |
---|
3646 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3647 | } |
---|
3648 | /* Process Row-0 data 1 --> data r3-1 */ |
---|
3649 | for (j = 1; j < r3; j++) |
---|
3650 | { |
---|
3651 | //index = k*r2*r3+j; |
---|
3652 | index ++; |
---|
3653 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
3654 | curData = cur_data_pos[j]; |
---|
3655 | diff = curData - pred2D; |
---|
3656 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3657 | if (itvNum < exe_params->intvCapacity) |
---|
3658 | { |
---|
3659 | if (diff < 0) itvNum = -itvNum; |
---|
3660 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3661 | P0[j] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
3662 | //ganrantee comporession error against the case of machine-epsilon |
---|
3663 | if(fabs(curData-P0[j])>realPrecision) |
---|
3664 | { |
---|
3665 | type[index] = 0; |
---|
3666 | P0[j] = curData; |
---|
3667 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3668 | } |
---|
3669 | } |
---|
3670 | else |
---|
3671 | { |
---|
3672 | type[index] = 0; |
---|
3673 | P0[j] = curData; |
---|
3674 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3675 | } |
---|
3676 | } |
---|
3677 | |
---|
3678 | cur_data_pos += dim1_offset; |
---|
3679 | /* Process Row-1 --> Row-r2-1 */ |
---|
3680 | size_t index2D; |
---|
3681 | for (i = 1; i < r2; i++) |
---|
3682 | { |
---|
3683 | /* Process Row-i data 0 */ |
---|
3684 | index = k*r23 + i*r3; |
---|
3685 | index2D = i*r3; |
---|
3686 | pred2D = P0[index2D-r3] + P1[index2D] - P1[index2D-r3]; |
---|
3687 | curData = *cur_data_pos; |
---|
3688 | diff = curData - pred2D; |
---|
3689 | |
---|
3690 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3691 | |
---|
3692 | if (itvNum < exe_params->intvCapacity) |
---|
3693 | { |
---|
3694 | if (diff < 0) itvNum = -itvNum; |
---|
3695 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3696 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
3697 | //ganrantee comporession error against the case of machine-epsilon |
---|
3698 | if(fabs(curData-P0[index2D])>realPrecision) |
---|
3699 | { |
---|
3700 | type[index] = 0; |
---|
3701 | P0[index2D] = curData; |
---|
3702 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3703 | } |
---|
3704 | } |
---|
3705 | else |
---|
3706 | { |
---|
3707 | type[index] = 0; |
---|
3708 | P0[index2D] = curData; |
---|
3709 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3710 | } |
---|
3711 | |
---|
3712 | /* Process Row-i data 1 --> data r3-1 */ |
---|
3713 | for (j = 1; j < r3; j++) |
---|
3714 | { |
---|
3715 | //index = k*r2*r3 + i*r3 + j; |
---|
3716 | index ++; |
---|
3717 | index2D = i*r3 + j; |
---|
3718 | pred3D = P0[index2D-1] + P0[index2D-r3]+ P1[index2D] - P0[index2D-r3-1] - P1[index2D-r3] - P1[index2D-1] + P1[index2D-r3-1]; |
---|
3719 | curData = cur_data_pos[j]; |
---|
3720 | diff = curData - pred3D; |
---|
3721 | |
---|
3722 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3723 | |
---|
3724 | if (itvNum < exe_params->intvCapacity) |
---|
3725 | { |
---|
3726 | if (diff < 0) itvNum = -itvNum; |
---|
3727 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3728 | P0[index2D] = pred3D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
3729 | |
---|
3730 | //ganrantee comporession error against the case of machine-epsilon |
---|
3731 | if(fabs(curData-P0[index2D])>realPrecision) |
---|
3732 | { |
---|
3733 | type[index] = 0; |
---|
3734 | P0[index2D] = curData; |
---|
3735 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3736 | } |
---|
3737 | } |
---|
3738 | else |
---|
3739 | { |
---|
3740 | type[index] = 0; |
---|
3741 | P0[index2D] = curData; |
---|
3742 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3743 | } |
---|
3744 | } |
---|
3745 | cur_data_pos += dim1_offset; |
---|
3746 | } |
---|
3747 | cur_data_pos += dim0_offset - r2 * dim1_offset; |
---|
3748 | float *Pt; |
---|
3749 | Pt = P1; |
---|
3750 | P1 = P0; |
---|
3751 | P0 = Pt; |
---|
3752 | } |
---|
3753 | |
---|
3754 | return unpredictable_count; |
---|
3755 | } |
---|
3756 | |
---|
3757 | unsigned int optimize_intervals_float_2D_opt(float *oriData, size_t r1, size_t r2, double realPrecision) |
---|
3758 | { |
---|
3759 | size_t i; |
---|
3760 | size_t radiusIndex; |
---|
3761 | float pred_value = 0, pred_err; |
---|
3762 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
3763 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
3764 | size_t totalSampleSize = 0; |
---|
3765 | |
---|
3766 | size_t offset_count = confparams_cpr->sampleDistance - 1; // count r2 offset |
---|
3767 | size_t offset_count_2; |
---|
3768 | float * data_pos = oriData + r2 + offset_count; |
---|
3769 | size_t n1_count = 1; // count i sum |
---|
3770 | size_t len = r1 * r2; |
---|
3771 | while(data_pos - oriData < len){ |
---|
3772 | totalSampleSize++; |
---|
3773 | pred_value = data_pos[-1] + data_pos[-r2] - data_pos[-r2-1]; |
---|
3774 | pred_err = fabs(pred_value - *data_pos); |
---|
3775 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
3776 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
3777 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
3778 | intervals[radiusIndex]++; |
---|
3779 | |
---|
3780 | offset_count += confparams_cpr->sampleDistance; |
---|
3781 | if(offset_count >= r2){ |
---|
3782 | n1_count ++; |
---|
3783 | offset_count_2 = n1_count % confparams_cpr->sampleDistance; |
---|
3784 | data_pos += (r2 + confparams_cpr->sampleDistance - offset_count) + (confparams_cpr->sampleDistance - offset_count_2); |
---|
3785 | offset_count = (confparams_cpr->sampleDistance - offset_count_2); |
---|
3786 | if(offset_count == 0) offset_count ++; |
---|
3787 | } |
---|
3788 | else data_pos += confparams_cpr->sampleDistance; |
---|
3789 | } |
---|
3790 | |
---|
3791 | //compute the appropriate number |
---|
3792 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
3793 | size_t sum = 0; |
---|
3794 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
3795 | { |
---|
3796 | sum += intervals[i]; |
---|
3797 | if(sum>targetCount) |
---|
3798 | break; |
---|
3799 | } |
---|
3800 | if(i>=confparams_cpr->maxRangeRadius) |
---|
3801 | i = confparams_cpr->maxRangeRadius-1; |
---|
3802 | unsigned int accIntervals = 2*(i+1); |
---|
3803 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
3804 | |
---|
3805 | if(powerOf2<32) |
---|
3806 | powerOf2 = 32; |
---|
3807 | |
---|
3808 | free(intervals); |
---|
3809 | return powerOf2; |
---|
3810 | } |
---|
3811 | |
---|
3812 | unsigned int optimize_intervals_float_1D_opt(float *oriData, size_t dataLength, double realPrecision) |
---|
3813 | { |
---|
3814 | size_t i = 0, radiusIndex; |
---|
3815 | float pred_value = 0, pred_err; |
---|
3816 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
3817 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
3818 | size_t totalSampleSize = 0;//dataLength/confparams_cpr->sampleDistance; |
---|
3819 | |
---|
3820 | float * data_pos = oriData + 2; |
---|
3821 | while(data_pos - oriData < dataLength){ |
---|
3822 | totalSampleSize++; |
---|
3823 | pred_value = data_pos[-1]; |
---|
3824 | pred_err = fabs(pred_value - *data_pos); |
---|
3825 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
3826 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
3827 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
3828 | intervals[radiusIndex]++; |
---|
3829 | |
---|
3830 | data_pos += confparams_cpr->sampleDistance; |
---|
3831 | } |
---|
3832 | //compute the appropriate number |
---|
3833 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
3834 | size_t sum = 0; |
---|
3835 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
3836 | { |
---|
3837 | sum += intervals[i]; |
---|
3838 | if(sum>targetCount) |
---|
3839 | break; |
---|
3840 | } |
---|
3841 | if(i>=confparams_cpr->maxRangeRadius) |
---|
3842 | i = confparams_cpr->maxRangeRadius-1; |
---|
3843 | |
---|
3844 | unsigned int accIntervals = 2*(i+1); |
---|
3845 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
3846 | |
---|
3847 | if(powerOf2<32) |
---|
3848 | powerOf2 = 32; |
---|
3849 | |
---|
3850 | free(intervals); |
---|
3851 | return powerOf2; |
---|
3852 | } |
---|
3853 | |
---|
3854 | size_t SZ_compress_float_1D_MDQ_RA_block(float * block_ori_data, float * mean, size_t dim_0, size_t block_dim_0, double realPrecision, int * type, float * unpredictable_data){ |
---|
3855 | |
---|
3856 | mean[0] = block_ori_data[0]; |
---|
3857 | unsigned short unpredictable_count = 0; |
---|
3858 | |
---|
3859 | float curData; |
---|
3860 | double itvNum; |
---|
3861 | double diff; |
---|
3862 | float last_over_thres = mean[0]; |
---|
3863 | float pred1D; |
---|
3864 | size_t type_index = 0; |
---|
3865 | float * data_pos = block_ori_data; |
---|
3866 | for(size_t i=0; i<block_dim_0; i++){ |
---|
3867 | curData = *data_pos; |
---|
3868 | |
---|
3869 | pred1D = last_over_thres; |
---|
3870 | diff = curData - pred1D; |
---|
3871 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3872 | if (itvNum < exe_params->intvCapacity){ |
---|
3873 | if (diff < 0) itvNum = -itvNum; |
---|
3874 | type[type_index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3875 | last_over_thres = pred1D + 2 * (type[type_index] - exe_params->intvRadius) * realPrecision; |
---|
3876 | if(fabs(curData-last_over_thres)>realPrecision){ |
---|
3877 | type[type_index] = 0; |
---|
3878 | last_over_thres = curData; |
---|
3879 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3880 | } |
---|
3881 | |
---|
3882 | } |
---|
3883 | else{ |
---|
3884 | type[type_index] = 0; |
---|
3885 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3886 | last_over_thres = curData; |
---|
3887 | } |
---|
3888 | type_index ++; |
---|
3889 | data_pos ++; |
---|
3890 | } |
---|
3891 | return unpredictable_count; |
---|
3892 | |
---|
3893 | } |
---|
3894 | |
---|
3895 | size_t SZ_compress_float_2D_MDQ_RA_block(float * block_ori_data, float * mean, size_t dim_0, size_t dim_1, size_t block_dim_0, size_t block_dim_1, double realPrecision, float * P0, float * P1, int * type, float * unpredictable_data){ |
---|
3896 | |
---|
3897 | size_t dim0_offset = dim_1; |
---|
3898 | mean[0] = block_ori_data[0]; |
---|
3899 | |
---|
3900 | size_t unpredictable_count = 0; |
---|
3901 | size_t r1, r2; |
---|
3902 | r1 = block_dim_0; |
---|
3903 | r2 = block_dim_1; |
---|
3904 | |
---|
3905 | float * cur_data_pos = block_ori_data; |
---|
3906 | float curData; |
---|
3907 | float pred1D, pred2D; |
---|
3908 | double itvNum; |
---|
3909 | double diff; |
---|
3910 | size_t i, j; |
---|
3911 | /* Process Row-0 data 0*/ |
---|
3912 | curData = *cur_data_pos; |
---|
3913 | pred1D = mean[0]; |
---|
3914 | diff = curData - pred1D; |
---|
3915 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3916 | if (itvNum < exe_params->intvCapacity){ |
---|
3917 | if (diff < 0) itvNum = -itvNum; |
---|
3918 | type[0] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3919 | P1[0] = pred1D + 2 * (type[0] - exe_params->intvRadius) * realPrecision; |
---|
3920 | //ganrantee comporession error against the case of machine-epsilon |
---|
3921 | if(fabs(curData-P1[0])>realPrecision){ |
---|
3922 | type[0] = 0; |
---|
3923 | P1[0] = curData; |
---|
3924 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3925 | } |
---|
3926 | } |
---|
3927 | else{ |
---|
3928 | type[0] = 0; |
---|
3929 | P1[0] = curData; |
---|
3930 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3931 | } |
---|
3932 | |
---|
3933 | /* Process Row-0 data 1*/ |
---|
3934 | curData = cur_data_pos[1]; |
---|
3935 | pred1D = P1[0]; |
---|
3936 | diff = curData - pred1D; |
---|
3937 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3938 | if (itvNum < exe_params->intvCapacity){ |
---|
3939 | if (diff < 0) itvNum = -itvNum; |
---|
3940 | type[1] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3941 | P1[1] = pred1D + 2 * (type[1] - exe_params->intvRadius) * realPrecision; |
---|
3942 | //ganrantee comporession error against the case of machine-epsilon |
---|
3943 | if(fabs(curData-P1[1])>realPrecision){ |
---|
3944 | type[1] = 0; |
---|
3945 | P1[1] = curData; |
---|
3946 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3947 | } |
---|
3948 | } |
---|
3949 | else{ |
---|
3950 | type[1] = 0; |
---|
3951 | P1[1] = curData; |
---|
3952 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3953 | } |
---|
3954 | |
---|
3955 | /* Process Row-0 data 2 --> data r2-1 */ |
---|
3956 | for (j = 2; j < r2; j++) |
---|
3957 | { |
---|
3958 | curData = cur_data_pos[j]; |
---|
3959 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
3960 | diff = curData - pred1D; |
---|
3961 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3962 | if (itvNum < exe_params->intvCapacity){ |
---|
3963 | if (diff < 0) itvNum = -itvNum; |
---|
3964 | type[j] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3965 | P1[j] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
3966 | //ganrantee comporession error against the case of machine-epsilon |
---|
3967 | if(fabs(curData-P1[j])>realPrecision){ |
---|
3968 | type[j] = 0; |
---|
3969 | P1[j] = curData; |
---|
3970 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3971 | } |
---|
3972 | } |
---|
3973 | else{ |
---|
3974 | type[j] = 0; |
---|
3975 | P1[j] = curData; |
---|
3976 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3977 | } |
---|
3978 | } |
---|
3979 | cur_data_pos += dim0_offset; |
---|
3980 | /* Process Row-1 --> Row-r1-1 */ |
---|
3981 | size_t index; |
---|
3982 | for (i = 1; i < r1; i++) |
---|
3983 | { |
---|
3984 | /* Process row-i data 0 */ |
---|
3985 | index = i*r2; |
---|
3986 | curData = *cur_data_pos; |
---|
3987 | pred1D = P1[0]; |
---|
3988 | diff = curData - pred1D; |
---|
3989 | itvNum = fabs(diff)/realPrecision + 1; |
---|
3990 | if (itvNum < exe_params->intvCapacity){ |
---|
3991 | if (diff < 0) itvNum = -itvNum; |
---|
3992 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
3993 | P0[0] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
3994 | //ganrantee comporession error against the case of machine-epsilon |
---|
3995 | if(fabs(curData-P0[0])>realPrecision){ |
---|
3996 | type[index] = 0; |
---|
3997 | P0[0] = curData; |
---|
3998 | unpredictable_data[unpredictable_count ++] = curData; |
---|
3999 | } |
---|
4000 | } |
---|
4001 | else{ |
---|
4002 | type[index] = 0; |
---|
4003 | P0[0] = curData; |
---|
4004 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4005 | } |
---|
4006 | |
---|
4007 | /* Process row-i data 1 --> r2-1*/ |
---|
4008 | for (j = 1; j < r2; j++) |
---|
4009 | { |
---|
4010 | index = i*r2+j; |
---|
4011 | curData = cur_data_pos[j]; |
---|
4012 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
4013 | diff = curData - pred2D; |
---|
4014 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4015 | if (itvNum < exe_params->intvCapacity) |
---|
4016 | { |
---|
4017 | if (diff < 0) itvNum = -itvNum; |
---|
4018 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
4019 | P0[j] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
4020 | |
---|
4021 | //ganrantee comporession error against the case of machine-epsilon |
---|
4022 | if(fabs(curData-P0[j])>realPrecision) |
---|
4023 | { |
---|
4024 | type[index] = 0; |
---|
4025 | P0[j] = curData; |
---|
4026 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4027 | } |
---|
4028 | } |
---|
4029 | else |
---|
4030 | { |
---|
4031 | type[index] = 0; |
---|
4032 | P0[j] = curData; |
---|
4033 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4034 | } |
---|
4035 | } |
---|
4036 | cur_data_pos += dim0_offset; |
---|
4037 | |
---|
4038 | float *Pt; |
---|
4039 | Pt = P1; |
---|
4040 | P1 = P0; |
---|
4041 | P0 = Pt; |
---|
4042 | } |
---|
4043 | return unpredictable_count; |
---|
4044 | } |
---|
4045 | |
---|
4046 | /*The above code is for sz 1.4.13; the following code is for sz 2.0*/ |
---|
4047 | |
---|
4048 | unsigned int optimize_intervals_float_2D_with_freq_and_dense_pos(float *oriData, size_t r1, size_t r2, double realPrecision, float * dense_pos, float * max_freq, float * mean_freq) |
---|
4049 | { |
---|
4050 | float mean = 0.0; |
---|
4051 | size_t len = r1 * r2; |
---|
4052 | size_t mean_distance = (int) (sqrt(len)); |
---|
4053 | |
---|
4054 | float * data_pos = oriData; |
---|
4055 | size_t mean_count = 0; |
---|
4056 | while(data_pos - oriData < len){ |
---|
4057 | mean += *data_pos; |
---|
4058 | mean_count ++; |
---|
4059 | data_pos += mean_distance; |
---|
4060 | } |
---|
4061 | if(mean_count > 0) mean /= mean_count; |
---|
4062 | size_t range = 8192; |
---|
4063 | size_t radius = 4096; |
---|
4064 | size_t * freq_intervals = (size_t *) malloc(range*sizeof(size_t)); |
---|
4065 | memset(freq_intervals, 0, range*sizeof(size_t)); |
---|
4066 | |
---|
4067 | unsigned int maxRangeRadius = confparams_cpr->maxRangeRadius; |
---|
4068 | int sampleDistance = confparams_cpr->sampleDistance; |
---|
4069 | float predThreshold = confparams_cpr->predThreshold; |
---|
4070 | |
---|
4071 | size_t i; |
---|
4072 | size_t radiusIndex; |
---|
4073 | float pred_value = 0, pred_err; |
---|
4074 | size_t *intervals = (size_t*)malloc(maxRangeRadius*sizeof(size_t)); |
---|
4075 | memset(intervals, 0, maxRangeRadius*sizeof(size_t)); |
---|
4076 | |
---|
4077 | float mean_diff; |
---|
4078 | ptrdiff_t freq_index; |
---|
4079 | size_t freq_count = 0; |
---|
4080 | size_t n1_count = 1; |
---|
4081 | size_t offset_count = sampleDistance - 1; |
---|
4082 | size_t offset_count_2 = 0; |
---|
4083 | size_t sample_count = 0; |
---|
4084 | data_pos = oriData + r2 + offset_count; |
---|
4085 | while(data_pos - oriData < len){ |
---|
4086 | pred_value = data_pos[-1] + data_pos[-r2] - data_pos[-r2-1]; |
---|
4087 | pred_err = fabs(pred_value - *data_pos); |
---|
4088 | if(pred_err < realPrecision) freq_count ++; |
---|
4089 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
4090 | if(radiusIndex>=maxRangeRadius) |
---|
4091 | radiusIndex = maxRangeRadius - 1; |
---|
4092 | intervals[radiusIndex]++; |
---|
4093 | |
---|
4094 | mean_diff = *data_pos - mean; |
---|
4095 | if(mean_diff > 0) freq_index = (ptrdiff_t)(mean_diff/realPrecision) + radius; |
---|
4096 | else freq_index = (ptrdiff_t)(mean_diff/realPrecision) - 1 + radius; |
---|
4097 | if(freq_index <= 0){ |
---|
4098 | freq_intervals[0] ++; |
---|
4099 | } |
---|
4100 | else if(freq_index >= range){ |
---|
4101 | freq_intervals[range - 1] ++; |
---|
4102 | } |
---|
4103 | else{ |
---|
4104 | freq_intervals[freq_index] ++; |
---|
4105 | } |
---|
4106 | offset_count += sampleDistance; |
---|
4107 | if(offset_count >= r2){ |
---|
4108 | n1_count ++; |
---|
4109 | offset_count_2 = n1_count % sampleDistance; |
---|
4110 | data_pos += (r2 + sampleDistance - offset_count) + (sampleDistance - offset_count_2); |
---|
4111 | offset_count = (sampleDistance - offset_count_2); |
---|
4112 | if(offset_count == 0) offset_count ++; |
---|
4113 | } |
---|
4114 | else data_pos += sampleDistance; |
---|
4115 | sample_count ++; |
---|
4116 | } |
---|
4117 | *max_freq = freq_count * 1.0/ sample_count; |
---|
4118 | |
---|
4119 | //compute the appropriate number |
---|
4120 | size_t targetCount = sample_count*predThreshold; |
---|
4121 | size_t sum = 0; |
---|
4122 | for(i=0;i<maxRangeRadius;i++) |
---|
4123 | { |
---|
4124 | sum += intervals[i]; |
---|
4125 | if(sum>targetCount) |
---|
4126 | break; |
---|
4127 | } |
---|
4128 | if(i>=maxRangeRadius) |
---|
4129 | i = maxRangeRadius-1; |
---|
4130 | unsigned int accIntervals = 2*(i+1); |
---|
4131 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
4132 | |
---|
4133 | if(powerOf2<32) |
---|
4134 | powerOf2 = 32; |
---|
4135 | |
---|
4136 | // collect frequency |
---|
4137 | size_t max_sum = 0; |
---|
4138 | size_t max_index = 0; |
---|
4139 | size_t tmp_sum; |
---|
4140 | size_t * freq_pos = freq_intervals + 1; |
---|
4141 | for(size_t i=1; i<range-2; i++){ |
---|
4142 | tmp_sum = freq_pos[0] + freq_pos[1]; |
---|
4143 | if(tmp_sum > max_sum){ |
---|
4144 | max_sum = tmp_sum; |
---|
4145 | max_index = i; |
---|
4146 | } |
---|
4147 | freq_pos ++; |
---|
4148 | } |
---|
4149 | *dense_pos = mean + realPrecision * (ptrdiff_t)(max_index + 1 - radius); |
---|
4150 | *mean_freq = max_sum * 1.0 / sample_count; |
---|
4151 | |
---|
4152 | free(freq_intervals); |
---|
4153 | free(intervals); |
---|
4154 | return powerOf2; |
---|
4155 | } |
---|
4156 | |
---|
4157 | // 2D: modified for higher performance |
---|
4158 | #define MIN(a, b) a<b? a : b |
---|
4159 | unsigned char * SZ_compress_float_2D_MDQ_nonblocked_with_blocked_regression(float *oriData, size_t r1, size_t r2, double realPrecision, size_t * comp_size){ |
---|
4160 | |
---|
4161 | unsigned int quantization_intervals; |
---|
4162 | float sz_sample_correct_freq = -1;//0.5; //-1 |
---|
4163 | float dense_pos; |
---|
4164 | float mean_flush_freq; |
---|
4165 | unsigned char use_mean = 0; |
---|
4166 | |
---|
4167 | if(exe_params->optQuantMode==1) |
---|
4168 | { |
---|
4169 | quantization_intervals = optimize_intervals_float_2D_with_freq_and_dense_pos(oriData, r1, r2, realPrecision, &dense_pos, &sz_sample_correct_freq, &mean_flush_freq); |
---|
4170 | if(mean_flush_freq > 0.5 || mean_flush_freq > sz_sample_correct_freq) use_mean = 1; |
---|
4171 | updateQuantizationInfo(quantization_intervals); |
---|
4172 | } |
---|
4173 | else{ |
---|
4174 | quantization_intervals = exe_params->intvCapacity; |
---|
4175 | } |
---|
4176 | |
---|
4177 | // calculate block dims |
---|
4178 | size_t num_x, num_y; |
---|
4179 | size_t block_size = 16; |
---|
4180 | |
---|
4181 | SZ_COMPUTE_2D_NUMBER_OF_BLOCKS(r1, num_x, block_size); |
---|
4182 | SZ_COMPUTE_2D_NUMBER_OF_BLOCKS(r2, num_y, block_size); |
---|
4183 | |
---|
4184 | size_t split_index_x, split_index_y; |
---|
4185 | size_t early_blockcount_x, early_blockcount_y; |
---|
4186 | size_t late_blockcount_x, late_blockcount_y; |
---|
4187 | SZ_COMPUTE_BLOCKCOUNT(r1, num_x, split_index_x, early_blockcount_x, late_blockcount_x); |
---|
4188 | SZ_COMPUTE_BLOCKCOUNT(r2, num_y, split_index_y, early_blockcount_y, late_blockcount_y); |
---|
4189 | |
---|
4190 | size_t max_num_block_elements = early_blockcount_x * early_blockcount_y; |
---|
4191 | size_t num_blocks = num_x * num_y; |
---|
4192 | size_t num_elements = r1 * r2; |
---|
4193 | |
---|
4194 | size_t dim0_offset = r2; |
---|
4195 | |
---|
4196 | int * result_type = (int *) malloc(num_elements * sizeof(int)); |
---|
4197 | size_t unpred_data_max_size = max_num_block_elements; |
---|
4198 | float * result_unpredictable_data = (float *) malloc(unpred_data_max_size * sizeof(float) * num_blocks); |
---|
4199 | size_t total_unpred = 0; |
---|
4200 | size_t unpredictable_count; |
---|
4201 | float * data_pos = oriData; |
---|
4202 | int * type = result_type; |
---|
4203 | size_t offset_x, offset_y; |
---|
4204 | size_t current_blockcount_x, current_blockcount_y; |
---|
4205 | |
---|
4206 | float * reg_params = (float *) malloc(num_blocks * 4 * sizeof(float)); |
---|
4207 | float * reg_params_pos = reg_params; |
---|
4208 | // move regression part out |
---|
4209 | size_t params_offset_b = num_blocks; |
---|
4210 | size_t params_offset_c = 2*num_blocks; |
---|
4211 | for(size_t i=0; i<num_x; i++){ |
---|
4212 | for(size_t j=0; j<num_y; j++){ |
---|
4213 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
4214 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
4215 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
4216 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
4217 | |
---|
4218 | data_pos = oriData + offset_x * dim0_offset + offset_y; |
---|
4219 | |
---|
4220 | { |
---|
4221 | float * cur_data_pos = data_pos; |
---|
4222 | float fx = 0.0; |
---|
4223 | float fy = 0.0; |
---|
4224 | float f = 0; |
---|
4225 | double sum_x; |
---|
4226 | float curData; |
---|
4227 | for(size_t i=0; i<current_blockcount_x; i++){ |
---|
4228 | sum_x = 0; |
---|
4229 | for(size_t j=0; j<current_blockcount_y; j++){ |
---|
4230 | curData = *cur_data_pos; |
---|
4231 | sum_x += curData; |
---|
4232 | fy += curData * j; |
---|
4233 | cur_data_pos ++; |
---|
4234 | } |
---|
4235 | fx += sum_x * i; |
---|
4236 | f += sum_x; |
---|
4237 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
4238 | } |
---|
4239 | float coeff = 1.0 / (current_blockcount_x * current_blockcount_y); |
---|
4240 | reg_params_pos[0] = (2 * fx / (current_blockcount_x - 1) - f) * 6 * coeff / (current_blockcount_x + 1); |
---|
4241 | reg_params_pos[params_offset_b] = (2 * fy / (current_blockcount_y - 1) - f) * 6 * coeff / (current_blockcount_y + 1); |
---|
4242 | reg_params_pos[params_offset_c] = f * coeff - ((current_blockcount_x - 1) * reg_params_pos[0] / 2 + (current_blockcount_y - 1) * reg_params_pos[params_offset_b] / 2); |
---|
4243 | } |
---|
4244 | |
---|
4245 | reg_params_pos ++; |
---|
4246 | } |
---|
4247 | } |
---|
4248 | |
---|
4249 | //Compress coefficient arrays |
---|
4250 | double precision_a, precision_b, precision_c; |
---|
4251 | float rel_param_err = 0.15/3; |
---|
4252 | precision_a = rel_param_err * realPrecision / late_blockcount_x; |
---|
4253 | precision_b = rel_param_err * realPrecision / late_blockcount_y; |
---|
4254 | precision_c = rel_param_err * realPrecision; |
---|
4255 | |
---|
4256 | float mean = 0; |
---|
4257 | use_mean = 0; |
---|
4258 | if(use_mean){ |
---|
4259 | // compute mean |
---|
4260 | double sum = 0.0; |
---|
4261 | size_t mean_count = 0; |
---|
4262 | for(size_t i=0; i<num_elements; i++){ |
---|
4263 | if(fabs(oriData[i] - dense_pos) < realPrecision){ |
---|
4264 | sum += oriData[i]; |
---|
4265 | mean_count ++; |
---|
4266 | } |
---|
4267 | } |
---|
4268 | if(mean_count > 0) mean = sum / mean_count; |
---|
4269 | } |
---|
4270 | |
---|
4271 | |
---|
4272 | double tmp_realPrecision = realPrecision; |
---|
4273 | |
---|
4274 | // use two prediction buffers for higher performance |
---|
4275 | float * unpredictable_data = result_unpredictable_data; |
---|
4276 | unsigned char * indicator = (unsigned char *) malloc(num_blocks * sizeof(unsigned char)); |
---|
4277 | memset(indicator, 0, num_blocks * sizeof(unsigned char)); |
---|
4278 | size_t reg_count = 0; |
---|
4279 | size_t strip_dim_0 = early_blockcount_x + 1; |
---|
4280 | size_t strip_dim_1 = r2 + 1; |
---|
4281 | size_t strip_dim0_offset = strip_dim_1; |
---|
4282 | unsigned char * indicator_pos = indicator; |
---|
4283 | size_t prediction_buffer_size = strip_dim_0 * strip_dim0_offset * sizeof(float); |
---|
4284 | float * prediction_buffer_1 = (float *) malloc(prediction_buffer_size); |
---|
4285 | memset(prediction_buffer_1, 0, prediction_buffer_size); |
---|
4286 | float * prediction_buffer_2 = (float *) malloc(prediction_buffer_size); |
---|
4287 | memset(prediction_buffer_2, 0, prediction_buffer_size); |
---|
4288 | float * cur_pb_buf = prediction_buffer_1; |
---|
4289 | float * next_pb_buf = prediction_buffer_2; |
---|
4290 | float * cur_pb_buf_pos; |
---|
4291 | float * next_pb_buf_pos; |
---|
4292 | int intvCapacity = exe_params->intvCapacity; |
---|
4293 | int intvRadius = exe_params->intvRadius; |
---|
4294 | int use_reg = 0; |
---|
4295 | |
---|
4296 | reg_params_pos = reg_params; |
---|
4297 | // compress the regression coefficients on the fly |
---|
4298 | float last_coeffcients[3] = {0.0}; |
---|
4299 | int coeff_intvCapacity_sz = 65536; |
---|
4300 | int coeff_intvRadius = coeff_intvCapacity_sz / 2; |
---|
4301 | int * coeff_type[3]; |
---|
4302 | int * coeff_result_type = (int *) malloc(num_blocks*3*sizeof(int)); |
---|
4303 | float * coeff_unpred_data[3]; |
---|
4304 | float * coeff_unpredictable_data = (float *) malloc(num_blocks*3*sizeof(float)); |
---|
4305 | double precision[3]; |
---|
4306 | precision[0] = precision_a, precision[1] = precision_b, precision[2] = precision_c; |
---|
4307 | for(int i=0; i<3; i++){ |
---|
4308 | coeff_type[i] = coeff_result_type + i * num_blocks; |
---|
4309 | coeff_unpred_data[i] = coeff_unpredictable_data + i * num_blocks; |
---|
4310 | } |
---|
4311 | int coeff_index = 0; |
---|
4312 | unsigned int coeff_unpredictable_count[3] = {0}; |
---|
4313 | if(use_mean){ |
---|
4314 | type = result_type; |
---|
4315 | int intvCapacity_sz = intvCapacity - 2; |
---|
4316 | for(size_t i=0; i<num_x; i++){ |
---|
4317 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
4318 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
4319 | data_pos = oriData + offset_x * dim0_offset; |
---|
4320 | |
---|
4321 | cur_pb_buf_pos = cur_pb_buf + strip_dim0_offset + 1; |
---|
4322 | next_pb_buf_pos = next_pb_buf + 1; |
---|
4323 | float * pb_pos = cur_pb_buf_pos; |
---|
4324 | float * next_pb_pos = next_pb_buf_pos; |
---|
4325 | |
---|
4326 | for(size_t j=0; j<num_y; j++){ |
---|
4327 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
4328 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
4329 | |
---|
4330 | /*sampling: decide which predictor to use (regression or lorenzo)*/ |
---|
4331 | { |
---|
4332 | float * cur_data_pos; |
---|
4333 | float curData; |
---|
4334 | float pred_reg, pred_sz; |
---|
4335 | float err_sz = 0.0, err_reg = 0.0; |
---|
4336 | // [1, 1] [3, 3] [5, 5] [7, 7] [9, 9] |
---|
4337 | // [1, 9] [3, 7] [7, 3] [9, 1] |
---|
4338 | int count = 0; |
---|
4339 | for(int i=1; i<current_blockcount_x; i+=2){ |
---|
4340 | cur_data_pos = data_pos + i * dim0_offset + i; |
---|
4341 | curData = *cur_data_pos; |
---|
4342 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
4343 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c]; |
---|
4344 | |
---|
4345 | err_sz += MIN(fabs(pred_sz - curData) + realPrecision*0.81, fabs(mean - curData)); |
---|
4346 | |
---|
4347 | err_reg += fabs(pred_reg - curData); |
---|
4348 | |
---|
4349 | cur_data_pos = data_pos + i * dim0_offset + (block_size - i); |
---|
4350 | curData = *cur_data_pos; |
---|
4351 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
4352 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * (block_size - i) + reg_params_pos[params_offset_c]; |
---|
4353 | err_sz += MIN(fabs(pred_sz - curData) + realPrecision*0.81, fabs(mean - curData)); |
---|
4354 | |
---|
4355 | err_reg += fabs(pred_reg - curData); |
---|
4356 | |
---|
4357 | count += 2; |
---|
4358 | } |
---|
4359 | |
---|
4360 | use_reg = (err_reg < err_sz); |
---|
4361 | } |
---|
4362 | if(use_reg) |
---|
4363 | { |
---|
4364 | { |
---|
4365 | /*predict coefficients in current block via previous reg_block*/ |
---|
4366 | float cur_coeff; |
---|
4367 | double diff, itvNum; |
---|
4368 | for(int e=0; e<3; e++){ |
---|
4369 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
4370 | diff = cur_coeff - last_coeffcients[e]; |
---|
4371 | itvNum = fabs(diff)/precision[e] + 1; |
---|
4372 | if (itvNum < coeff_intvCapacity_sz){ |
---|
4373 | if (diff < 0) itvNum = -itvNum; |
---|
4374 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
4375 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
4376 | //ganrantee comporession error against the case of machine-epsilon |
---|
4377 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
4378 | coeff_type[e][coeff_index] = 0; |
---|
4379 | last_coeffcients[e] = cur_coeff; |
---|
4380 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
4381 | } |
---|
4382 | } |
---|
4383 | else{ |
---|
4384 | coeff_type[e][coeff_index] = 0; |
---|
4385 | last_coeffcients[e] = cur_coeff; |
---|
4386 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
4387 | } |
---|
4388 | } |
---|
4389 | coeff_index ++; |
---|
4390 | } |
---|
4391 | float curData; |
---|
4392 | float pred; |
---|
4393 | double itvNum; |
---|
4394 | double diff; |
---|
4395 | size_t index = 0; |
---|
4396 | size_t block_unpredictable_count = 0; |
---|
4397 | float * cur_data_pos = data_pos; |
---|
4398 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
4399 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
4400 | curData = *cur_data_pos; |
---|
4401 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
4402 | diff = curData - pred; |
---|
4403 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4404 | if (itvNum < intvCapacity){ |
---|
4405 | if (diff < 0) itvNum = -itvNum; |
---|
4406 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4407 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
4408 | //ganrantee comporession error against the case of machine-epsilon |
---|
4409 | if(fabs(curData - pred)>realPrecision){ |
---|
4410 | type[index] = 0; |
---|
4411 | pred = curData; |
---|
4412 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4413 | } |
---|
4414 | } |
---|
4415 | else{ |
---|
4416 | type[index] = 0; |
---|
4417 | pred = curData; |
---|
4418 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4419 | } |
---|
4420 | index ++; |
---|
4421 | cur_data_pos ++; |
---|
4422 | } |
---|
4423 | /*dealing with the last jj (boundary)*/ |
---|
4424 | { |
---|
4425 | size_t jj = current_blockcount_y - 1; |
---|
4426 | curData = *cur_data_pos; |
---|
4427 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
4428 | diff = curData - pred; |
---|
4429 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4430 | if (itvNum < intvCapacity){ |
---|
4431 | if (diff < 0) itvNum = -itvNum; |
---|
4432 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4433 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
4434 | //ganrantee comporession error against the case of machine-epsilon |
---|
4435 | if(fabs(curData - pred)>realPrecision){ |
---|
4436 | type[index] = 0; |
---|
4437 | pred = curData; |
---|
4438 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4439 | } |
---|
4440 | } |
---|
4441 | else{ |
---|
4442 | type[index] = 0; |
---|
4443 | pred = curData; |
---|
4444 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4445 | } |
---|
4446 | |
---|
4447 | // assign value to block surfaces |
---|
4448 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
4449 | index ++; |
---|
4450 | cur_data_pos ++; |
---|
4451 | } |
---|
4452 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
4453 | } |
---|
4454 | /*dealing with the last ii (boundary)*/ |
---|
4455 | { |
---|
4456 | size_t ii = current_blockcount_x - 1; |
---|
4457 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
4458 | curData = *cur_data_pos; |
---|
4459 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
4460 | diff = curData - pred; |
---|
4461 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4462 | if (itvNum < intvCapacity){ |
---|
4463 | if (diff < 0) itvNum = -itvNum; |
---|
4464 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4465 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
4466 | //ganrantee comporession error against the case of machine-epsilon |
---|
4467 | if(fabs(curData - pred)>realPrecision){ |
---|
4468 | type[index] = 0; |
---|
4469 | pred = curData; |
---|
4470 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4471 | } |
---|
4472 | } |
---|
4473 | else{ |
---|
4474 | type[index] = 0; |
---|
4475 | pred = curData; |
---|
4476 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4477 | } |
---|
4478 | // assign value to next prediction buffer |
---|
4479 | next_pb_pos[jj] = pred; |
---|
4480 | index ++; |
---|
4481 | cur_data_pos ++; |
---|
4482 | } |
---|
4483 | /*dealing with the last jj (boundary)*/ |
---|
4484 | { |
---|
4485 | size_t jj = current_blockcount_y - 1; |
---|
4486 | curData = *cur_data_pos; |
---|
4487 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
4488 | diff = curData - pred; |
---|
4489 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4490 | if (itvNum < intvCapacity){ |
---|
4491 | if (diff < 0) itvNum = -itvNum; |
---|
4492 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4493 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
4494 | //ganrantee comporession error against the case of machine-epsilon |
---|
4495 | if(fabs(curData - pred)>realPrecision){ |
---|
4496 | type[index] = 0; |
---|
4497 | pred = curData; |
---|
4498 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4499 | } |
---|
4500 | } |
---|
4501 | else{ |
---|
4502 | type[index] = 0; |
---|
4503 | pred = curData; |
---|
4504 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4505 | } |
---|
4506 | |
---|
4507 | // assign value to block surfaces |
---|
4508 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
4509 | // assign value to next prediction buffer |
---|
4510 | next_pb_pos[jj] = pred; |
---|
4511 | |
---|
4512 | index ++; |
---|
4513 | cur_data_pos ++; |
---|
4514 | } |
---|
4515 | } // end ii == -1 |
---|
4516 | unpredictable_count = block_unpredictable_count; |
---|
4517 | total_unpred += unpredictable_count; |
---|
4518 | unpredictable_data += unpredictable_count; |
---|
4519 | reg_count ++; |
---|
4520 | }// end use_reg |
---|
4521 | else{ |
---|
4522 | // use SZ |
---|
4523 | // SZ predication |
---|
4524 | unpredictable_count = 0; |
---|
4525 | float * cur_pb_pos = pb_pos; |
---|
4526 | float * cur_data_pos = data_pos; |
---|
4527 | float curData; |
---|
4528 | float pred2D; |
---|
4529 | double itvNum, diff; |
---|
4530 | size_t index = 0; |
---|
4531 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
4532 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
4533 | curData = *cur_data_pos; |
---|
4534 | if(fabs(curData - mean) <= realPrecision){ |
---|
4535 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
4536 | type[index] = intvRadius; |
---|
4537 | *cur_pb_pos = mean; |
---|
4538 | } |
---|
4539 | else |
---|
4540 | { |
---|
4541 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
4542 | diff = curData - pred2D; |
---|
4543 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4544 | if (itvNum < intvCapacity_sz){ |
---|
4545 | if (diff < 0) itvNum = -itvNum; |
---|
4546 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4547 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
4548 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
4549 | //ganrantee comporession error against the case of machine-epsilon |
---|
4550 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
4551 | type[index] = 0; |
---|
4552 | *cur_pb_pos = curData; |
---|
4553 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4554 | } |
---|
4555 | } |
---|
4556 | else{ |
---|
4557 | type[index] = 0; |
---|
4558 | *cur_pb_pos = curData; |
---|
4559 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4560 | } |
---|
4561 | } |
---|
4562 | index ++; |
---|
4563 | cur_pb_pos ++; |
---|
4564 | cur_data_pos ++; |
---|
4565 | } |
---|
4566 | cur_pb_pos += strip_dim0_offset - current_blockcount_y; |
---|
4567 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
4568 | } |
---|
4569 | /*dealing with the last ii (boundary)*/ |
---|
4570 | { |
---|
4571 | // ii == current_blockcount_x - 1 |
---|
4572 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
4573 | curData = *cur_data_pos; |
---|
4574 | if(fabs(curData - mean) <= realPrecision){ |
---|
4575 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
4576 | type[index] = intvRadius; |
---|
4577 | *cur_pb_pos = mean; |
---|
4578 | } |
---|
4579 | else |
---|
4580 | { |
---|
4581 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
4582 | diff = curData - pred2D; |
---|
4583 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4584 | if (itvNum < intvCapacity_sz){ |
---|
4585 | if (diff < 0) itvNum = -itvNum; |
---|
4586 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4587 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
4588 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
4589 | //ganrantee comporession error against the case of machine-epsilon |
---|
4590 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
4591 | type[index] = 0; |
---|
4592 | *cur_pb_pos = curData; |
---|
4593 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4594 | } |
---|
4595 | } |
---|
4596 | else{ |
---|
4597 | type[index] = 0; |
---|
4598 | *cur_pb_pos = curData; |
---|
4599 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4600 | } |
---|
4601 | } |
---|
4602 | next_pb_pos[jj] = *cur_pb_pos; |
---|
4603 | index ++; |
---|
4604 | cur_pb_pos ++; |
---|
4605 | cur_data_pos ++; |
---|
4606 | } |
---|
4607 | } |
---|
4608 | total_unpred += unpredictable_count; |
---|
4609 | unpredictable_data += unpredictable_count; |
---|
4610 | // change indicator |
---|
4611 | indicator_pos[j] = 1; |
---|
4612 | }// end SZ |
---|
4613 | reg_params_pos ++; |
---|
4614 | data_pos += current_blockcount_y; |
---|
4615 | pb_pos += current_blockcount_y; |
---|
4616 | next_pb_pos += current_blockcount_y; |
---|
4617 | type += current_blockcount_x * current_blockcount_y; |
---|
4618 | }// end j |
---|
4619 | indicator_pos += num_y; |
---|
4620 | float * tmp; |
---|
4621 | tmp = cur_pb_buf; |
---|
4622 | cur_pb_buf = next_pb_buf; |
---|
4623 | next_pb_buf = tmp; |
---|
4624 | }// end i |
---|
4625 | }// end use mean |
---|
4626 | else{ |
---|
4627 | type = result_type; |
---|
4628 | int intvCapacity_sz = intvCapacity - 2; |
---|
4629 | for(size_t i=0; i<num_x; i++){ |
---|
4630 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
4631 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
4632 | data_pos = oriData + offset_x * dim0_offset; |
---|
4633 | |
---|
4634 | cur_pb_buf_pos = cur_pb_buf + strip_dim0_offset + 1; |
---|
4635 | next_pb_buf_pos = next_pb_buf + 1; |
---|
4636 | float * pb_pos = cur_pb_buf_pos; |
---|
4637 | float * next_pb_pos = next_pb_buf_pos; |
---|
4638 | |
---|
4639 | for(size_t j=0; j<num_y; j++){ |
---|
4640 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
4641 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
4642 | /*sampling*/ |
---|
4643 | { |
---|
4644 | // sample [2i + 1, 2i + 1] [2i + 1, bs - 2i] |
---|
4645 | float * cur_data_pos; |
---|
4646 | float curData; |
---|
4647 | float pred_reg, pred_sz; |
---|
4648 | float err_sz = 0.0, err_reg = 0.0; |
---|
4649 | // [1, 1] [3, 3] [5, 5] [7, 7] [9, 9] |
---|
4650 | // [1, 9] [3, 7] [7, 3] [9, 1] |
---|
4651 | int count = 0; |
---|
4652 | for(int i=1; i<current_blockcount_x; i+=2){ |
---|
4653 | cur_data_pos = data_pos + i * dim0_offset + i; |
---|
4654 | curData = *cur_data_pos; |
---|
4655 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
4656 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c]; |
---|
4657 | err_sz += fabs(pred_sz - curData); |
---|
4658 | err_reg += fabs(pred_reg - curData); |
---|
4659 | |
---|
4660 | cur_data_pos = data_pos + i * dim0_offset + (block_size - i); |
---|
4661 | curData = *cur_data_pos; |
---|
4662 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
4663 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * (block_size - i) + reg_params_pos[params_offset_c]; |
---|
4664 | err_sz += fabs(pred_sz - curData); |
---|
4665 | err_reg += fabs(pred_reg - curData); |
---|
4666 | |
---|
4667 | count += 2; |
---|
4668 | } |
---|
4669 | err_sz += realPrecision * count * 0.81; |
---|
4670 | use_reg = (err_reg < err_sz); |
---|
4671 | |
---|
4672 | } |
---|
4673 | if(use_reg) |
---|
4674 | { |
---|
4675 | { |
---|
4676 | /*predict coefficients in current block via previous reg_block*/ |
---|
4677 | float cur_coeff; |
---|
4678 | double diff, itvNum; |
---|
4679 | for(int e=0; e<3; e++){ |
---|
4680 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
4681 | diff = cur_coeff - last_coeffcients[e]; |
---|
4682 | itvNum = fabs(diff)/precision[e] + 1; |
---|
4683 | if (itvNum < coeff_intvCapacity_sz){ |
---|
4684 | if (diff < 0) itvNum = -itvNum; |
---|
4685 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
4686 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
4687 | //ganrantee comporession error against the case of machine-epsilon |
---|
4688 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
4689 | coeff_type[e][coeff_index] = 0; |
---|
4690 | last_coeffcients[e] = cur_coeff; |
---|
4691 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
4692 | } |
---|
4693 | } |
---|
4694 | else{ |
---|
4695 | coeff_type[e][coeff_index] = 0; |
---|
4696 | last_coeffcients[e] = cur_coeff; |
---|
4697 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
4698 | } |
---|
4699 | } |
---|
4700 | coeff_index ++; |
---|
4701 | } |
---|
4702 | float curData; |
---|
4703 | float pred; |
---|
4704 | double itvNum; |
---|
4705 | double diff; |
---|
4706 | size_t index = 0; |
---|
4707 | size_t block_unpredictable_count = 0; |
---|
4708 | float * cur_data_pos = data_pos; |
---|
4709 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
4710 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
4711 | curData = *cur_data_pos; |
---|
4712 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
4713 | diff = curData - pred; |
---|
4714 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4715 | if (itvNum < intvCapacity){ |
---|
4716 | if (diff < 0) itvNum = -itvNum; |
---|
4717 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4718 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
4719 | //ganrantee comporession error against the case of machine-epsilon |
---|
4720 | if(fabs(curData - pred)>realPrecision){ |
---|
4721 | type[index] = 0; |
---|
4722 | pred = curData; |
---|
4723 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4724 | } |
---|
4725 | } |
---|
4726 | else{ |
---|
4727 | type[index] = 0; |
---|
4728 | pred = curData; |
---|
4729 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4730 | } |
---|
4731 | index ++; |
---|
4732 | cur_data_pos ++; |
---|
4733 | } |
---|
4734 | /*dealing with the last jj (boundary)*/ |
---|
4735 | { |
---|
4736 | // jj == current_blockcount_y - 1 |
---|
4737 | size_t jj = current_blockcount_y - 1; |
---|
4738 | curData = *cur_data_pos; |
---|
4739 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
4740 | diff = curData - pred; |
---|
4741 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4742 | if (itvNum < intvCapacity){ |
---|
4743 | if (diff < 0) itvNum = -itvNum; |
---|
4744 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4745 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
4746 | //ganrantee comporession error against the case of machine-epsilon |
---|
4747 | if(fabs(curData - pred)>realPrecision){ |
---|
4748 | type[index] = 0; |
---|
4749 | pred = curData; |
---|
4750 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4751 | } |
---|
4752 | } |
---|
4753 | else{ |
---|
4754 | type[index] = 0; |
---|
4755 | pred = curData; |
---|
4756 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4757 | } |
---|
4758 | |
---|
4759 | // assign value to block surfaces |
---|
4760 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
4761 | index ++; |
---|
4762 | cur_data_pos ++; |
---|
4763 | } |
---|
4764 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
4765 | } |
---|
4766 | /*dealing with the last ii (boundary)*/ |
---|
4767 | { |
---|
4768 | size_t ii = current_blockcount_x - 1; |
---|
4769 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
4770 | curData = *cur_data_pos; |
---|
4771 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
4772 | diff = curData - pred; |
---|
4773 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4774 | if (itvNum < intvCapacity){ |
---|
4775 | if (diff < 0) itvNum = -itvNum; |
---|
4776 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4777 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
4778 | //ganrantee comporession error against the case of machine-epsilon |
---|
4779 | if(fabs(curData - pred)>realPrecision){ |
---|
4780 | type[index] = 0; |
---|
4781 | pred = curData; |
---|
4782 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4783 | } |
---|
4784 | } |
---|
4785 | else{ |
---|
4786 | type[index] = 0; |
---|
4787 | pred = curData; |
---|
4788 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4789 | } |
---|
4790 | // assign value to next prediction buffer |
---|
4791 | next_pb_pos[jj] = pred; |
---|
4792 | index ++; |
---|
4793 | cur_data_pos ++; |
---|
4794 | } |
---|
4795 | /*dealing with the last jj (boundary)*/ |
---|
4796 | { |
---|
4797 | // jj == current_blockcount_y - 1 |
---|
4798 | size_t jj = current_blockcount_y - 1; |
---|
4799 | curData = *cur_data_pos; |
---|
4800 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
4801 | diff = curData - pred; |
---|
4802 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4803 | if (itvNum < intvCapacity){ |
---|
4804 | if (diff < 0) itvNum = -itvNum; |
---|
4805 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4806 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
4807 | //ganrantee comporession error against the case of machine-epsilon |
---|
4808 | if(fabs(curData - pred)>realPrecision){ |
---|
4809 | type[index] = 0; |
---|
4810 | pred = curData; |
---|
4811 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4812 | } |
---|
4813 | } |
---|
4814 | else{ |
---|
4815 | type[index] = 0; |
---|
4816 | pred = curData; |
---|
4817 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
4818 | } |
---|
4819 | |
---|
4820 | // assign value to block surfaces |
---|
4821 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
4822 | // assign value to next prediction buffer |
---|
4823 | next_pb_pos[jj] = pred; |
---|
4824 | |
---|
4825 | index ++; |
---|
4826 | cur_data_pos ++; |
---|
4827 | } |
---|
4828 | } // end ii == -1 |
---|
4829 | unpredictable_count = block_unpredictable_count; |
---|
4830 | total_unpred += unpredictable_count; |
---|
4831 | unpredictable_data += unpredictable_count; |
---|
4832 | reg_count ++; |
---|
4833 | }// end use_reg |
---|
4834 | else{ |
---|
4835 | // use SZ |
---|
4836 | // SZ predication |
---|
4837 | unpredictable_count = 0; |
---|
4838 | float * cur_pb_pos = pb_pos; |
---|
4839 | float * cur_data_pos = data_pos; |
---|
4840 | float curData; |
---|
4841 | float pred2D; |
---|
4842 | double itvNum, diff; |
---|
4843 | size_t index = 0; |
---|
4844 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
4845 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
4846 | curData = *cur_data_pos; |
---|
4847 | |
---|
4848 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
4849 | diff = curData - pred2D; |
---|
4850 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4851 | if (itvNum < intvCapacity_sz){ |
---|
4852 | if (diff < 0) itvNum = -itvNum; |
---|
4853 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4854 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
4855 | //ganrantee comporession error against the case of machine-epsilon |
---|
4856 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
4857 | type[index] = 0; |
---|
4858 | *cur_pb_pos = curData; |
---|
4859 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4860 | } |
---|
4861 | } |
---|
4862 | else{ |
---|
4863 | type[index] = 0; |
---|
4864 | *cur_pb_pos = curData; |
---|
4865 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4866 | } |
---|
4867 | |
---|
4868 | index ++; |
---|
4869 | cur_pb_pos ++; |
---|
4870 | cur_data_pos ++; |
---|
4871 | } |
---|
4872 | cur_pb_pos += strip_dim0_offset - current_blockcount_y; |
---|
4873 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
4874 | } |
---|
4875 | /*dealing with the last ii (boundary)*/ |
---|
4876 | { |
---|
4877 | // ii == current_blockcount_x - 1 |
---|
4878 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
4879 | curData = *cur_data_pos; |
---|
4880 | |
---|
4881 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
4882 | diff = curData - pred2D; |
---|
4883 | itvNum = fabs(diff)/realPrecision + 1; |
---|
4884 | if (itvNum < intvCapacity_sz){ |
---|
4885 | if (diff < 0) itvNum = -itvNum; |
---|
4886 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
4887 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
4888 | //ganrantee comporession error against the case of machine-epsilon |
---|
4889 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
4890 | type[index] = 0; |
---|
4891 | *cur_pb_pos = curData; |
---|
4892 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4893 | } |
---|
4894 | } |
---|
4895 | else{ |
---|
4896 | type[index] = 0; |
---|
4897 | *cur_pb_pos = curData; |
---|
4898 | unpredictable_data[unpredictable_count ++] = curData; |
---|
4899 | } |
---|
4900 | next_pb_pos[jj] = *cur_pb_pos; |
---|
4901 | index ++; |
---|
4902 | cur_pb_pos ++; |
---|
4903 | cur_data_pos ++; |
---|
4904 | } |
---|
4905 | } |
---|
4906 | total_unpred += unpredictable_count; |
---|
4907 | unpredictable_data += unpredictable_count; |
---|
4908 | // change indicator |
---|
4909 | indicator_pos[j] = 1; |
---|
4910 | }// end SZ |
---|
4911 | reg_params_pos ++; |
---|
4912 | data_pos += current_blockcount_y; |
---|
4913 | pb_pos += current_blockcount_y; |
---|
4914 | next_pb_pos += current_blockcount_y; |
---|
4915 | type += current_blockcount_x * current_blockcount_y; |
---|
4916 | }// end j |
---|
4917 | indicator_pos += num_y; |
---|
4918 | float * tmp; |
---|
4919 | tmp = cur_pb_buf; |
---|
4920 | cur_pb_buf = next_pb_buf; |
---|
4921 | next_pb_buf = tmp; |
---|
4922 | }// end i |
---|
4923 | } |
---|
4924 | free(prediction_buffer_1); |
---|
4925 | free(prediction_buffer_2); |
---|
4926 | |
---|
4927 | int stateNum = 2*quantization_intervals; |
---|
4928 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
4929 | |
---|
4930 | size_t nodeCount = 0; |
---|
4931 | size_t i = 0; |
---|
4932 | init(huffmanTree, result_type, num_elements); |
---|
4933 | for (i = 0; i < stateNum; i++) |
---|
4934 | if (huffmanTree->code[i]) nodeCount++; |
---|
4935 | nodeCount = nodeCount*2-1; |
---|
4936 | |
---|
4937 | unsigned char *treeBytes; |
---|
4938 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
4939 | |
---|
4940 | unsigned int meta_data_offset = 3 + 1 + MetaDataByteLength; |
---|
4941 | // total size metadata # elements real precision intervals nodeCount huffman block index unpredicatable count mean unpred size elements |
---|
4942 | unsigned char * result = (unsigned char *) calloc(meta_data_offset + exe_params->SZ_SIZE_TYPE + sizeof(double) + sizeof(int) + sizeof(int) + treeByteSize + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(float) + total_unpred * sizeof(float) + num_elements * sizeof(int), 1); |
---|
4943 | unsigned char * result_pos = result; |
---|
4944 | initRandomAccessBytes(result_pos); |
---|
4945 | result_pos += meta_data_offset; |
---|
4946 | |
---|
4947 | sizeToBytes(result_pos, num_elements); |
---|
4948 | result_pos += exe_params->SZ_SIZE_TYPE; |
---|
4949 | |
---|
4950 | intToBytes_bigEndian(result_pos, block_size); |
---|
4951 | result_pos += sizeof(int); |
---|
4952 | doubleToBytes(result_pos, realPrecision); |
---|
4953 | result_pos += sizeof(double); |
---|
4954 | intToBytes_bigEndian(result_pos, quantization_intervals); |
---|
4955 | result_pos += sizeof(int); |
---|
4956 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
4957 | result_pos += sizeof(int); |
---|
4958 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
4959 | result_pos += sizeof(int); |
---|
4960 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
4961 | result_pos += treeByteSize; |
---|
4962 | free(treeBytes); |
---|
4963 | |
---|
4964 | memcpy(result_pos, &use_mean, sizeof(unsigned char)); |
---|
4965 | result_pos += sizeof(unsigned char); |
---|
4966 | memcpy(result_pos, &mean, sizeof(float)); |
---|
4967 | result_pos += sizeof(float); |
---|
4968 | |
---|
4969 | size_t indicator_size = convertIntArray2ByteArray_fast_1b_to_result(indicator, num_blocks, result_pos); |
---|
4970 | result_pos += indicator_size; |
---|
4971 | |
---|
4972 | //convert the lead/mid/resi to byte stream |
---|
4973 | if(reg_count>0){ |
---|
4974 | for(int e=0; e<3; e++){ |
---|
4975 | int stateNum = 2*coeff_intvCapacity_sz; |
---|
4976 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
4977 | size_t nodeCount = 0; |
---|
4978 | init(huffmanTree, coeff_type[e], reg_count); |
---|
4979 | size_t i = 0; |
---|
4980 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
4981 | if (huffmanTree->code[i]) nodeCount++; |
---|
4982 | nodeCount = nodeCount*2-1; |
---|
4983 | unsigned char *treeBytes; |
---|
4984 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
4985 | doubleToBytes(result_pos, precision[e]); |
---|
4986 | result_pos += sizeof(double); |
---|
4987 | intToBytes_bigEndian(result_pos, coeff_intvRadius); |
---|
4988 | result_pos += sizeof(int); |
---|
4989 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
4990 | result_pos += sizeof(int); |
---|
4991 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
4992 | result_pos += sizeof(int); |
---|
4993 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
4994 | result_pos += treeByteSize; |
---|
4995 | free(treeBytes); |
---|
4996 | size_t typeArray_size = 0; |
---|
4997 | encode(huffmanTree, coeff_type[e], reg_count, result_pos + sizeof(size_t), &typeArray_size); |
---|
4998 | sizeToBytes(result_pos, typeArray_size); |
---|
4999 | result_pos += sizeof(size_t) + typeArray_size; |
---|
5000 | intToBytes_bigEndian(result_pos, coeff_unpredictable_count[e]); |
---|
5001 | result_pos += sizeof(int); |
---|
5002 | memcpy(result_pos, coeff_unpred_data[e], coeff_unpredictable_count[e]*sizeof(float)); |
---|
5003 | result_pos += coeff_unpredictable_count[e]*sizeof(float); |
---|
5004 | SZ_ReleaseHuffman(huffmanTree); |
---|
5005 | } |
---|
5006 | } |
---|
5007 | free(coeff_result_type); |
---|
5008 | free(coeff_unpredictable_data); |
---|
5009 | |
---|
5010 | //record the number of unpredictable data and also store them |
---|
5011 | memcpy(result_pos, &total_unpred, sizeof(size_t)); |
---|
5012 | result_pos += sizeof(size_t); |
---|
5013 | memcpy(result_pos, result_unpredictable_data, total_unpred * sizeof(float)); |
---|
5014 | result_pos += total_unpred * sizeof(float); |
---|
5015 | size_t typeArray_size = 0; |
---|
5016 | encode(huffmanTree, result_type, num_elements, result_pos, &typeArray_size); |
---|
5017 | result_pos += typeArray_size; |
---|
5018 | |
---|
5019 | size_t totalEncodeSize = result_pos - result; |
---|
5020 | free(indicator); |
---|
5021 | free(result_unpredictable_data); |
---|
5022 | free(result_type); |
---|
5023 | free(reg_params); |
---|
5024 | |
---|
5025 | SZ_ReleaseHuffman(huffmanTree); |
---|
5026 | *comp_size = totalEncodeSize; |
---|
5027 | |
---|
5028 | return result; |
---|
5029 | } |
---|
5030 | |
---|
5031 | unsigned int optimize_intervals_float_3D_with_freq_and_dense_pos(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, float * dense_pos, float * max_freq, float * mean_freq) |
---|
5032 | { |
---|
5033 | float mean = 0.0; |
---|
5034 | size_t len = r1 * r2 * r3; |
---|
5035 | size_t mean_distance = (int) (sqrt(len)); |
---|
5036 | float * data_pos = oriData; |
---|
5037 | size_t offset_count = 0; |
---|
5038 | size_t offset_count_2 = 0; |
---|
5039 | size_t mean_count = 0; |
---|
5040 | while(data_pos - oriData < len){ |
---|
5041 | mean += *data_pos; |
---|
5042 | mean_count ++; |
---|
5043 | data_pos += mean_distance; |
---|
5044 | offset_count += mean_distance; |
---|
5045 | offset_count_2 += mean_distance; |
---|
5046 | if(offset_count >= r3){ |
---|
5047 | offset_count = 0; |
---|
5048 | data_pos -= 1; |
---|
5049 | } |
---|
5050 | if(offset_count_2 >= r2 * r3){ |
---|
5051 | offset_count_2 = 0; |
---|
5052 | data_pos -= 1; |
---|
5053 | } |
---|
5054 | } |
---|
5055 | if(mean_count > 0) mean /= mean_count; |
---|
5056 | size_t range = 8192; |
---|
5057 | size_t radius = 4096; |
---|
5058 | size_t * freq_intervals = (size_t *) malloc(range*sizeof(size_t)); |
---|
5059 | memset(freq_intervals, 0, range*sizeof(size_t)); |
---|
5060 | |
---|
5061 | unsigned int maxRangeRadius = confparams_cpr->maxRangeRadius; |
---|
5062 | int sampleDistance = confparams_cpr->sampleDistance; |
---|
5063 | float predThreshold = confparams_cpr->predThreshold; |
---|
5064 | |
---|
5065 | size_t i; |
---|
5066 | size_t radiusIndex; |
---|
5067 | size_t r23=r2*r3; |
---|
5068 | float pred_value = 0, pred_err; |
---|
5069 | size_t *intervals = (size_t*)malloc(maxRangeRadius*sizeof(size_t)); |
---|
5070 | memset(intervals, 0, maxRangeRadius*sizeof(size_t)); |
---|
5071 | |
---|
5072 | float mean_diff; |
---|
5073 | ptrdiff_t freq_index; |
---|
5074 | size_t freq_count = 0; |
---|
5075 | size_t sample_count = 0; |
---|
5076 | |
---|
5077 | offset_count = confparams_cpr->sampleDistance - 2; // count r3 offset |
---|
5078 | data_pos = oriData + r23 + r3 + offset_count; |
---|
5079 | size_t n1_count = 1, n2_count = 1; // count i,j sum |
---|
5080 | |
---|
5081 | while(data_pos - oriData < len){ |
---|
5082 | |
---|
5083 | pred_value = data_pos[-1] + data_pos[-r3] + data_pos[-r23] - data_pos[-1-r23] - data_pos[-r3-1] - data_pos[-r3-r23] + data_pos[-r3-r23-1]; |
---|
5084 | pred_err = fabs(pred_value - *data_pos); |
---|
5085 | if(pred_err < realPrecision) freq_count ++; |
---|
5086 | radiusIndex = (pred_err/realPrecision+1)/2; |
---|
5087 | if(radiusIndex>=maxRangeRadius) |
---|
5088 | { |
---|
5089 | radiusIndex = maxRangeRadius - 1; |
---|
5090 | } |
---|
5091 | intervals[radiusIndex]++; |
---|
5092 | |
---|
5093 | mean_diff = *data_pos - mean; |
---|
5094 | if(mean_diff > 0) freq_index = (ptrdiff_t)(mean_diff/realPrecision) + radius; |
---|
5095 | else freq_index = (ptrdiff_t)(mean_diff/realPrecision) - 1 + radius; |
---|
5096 | if(freq_index <= 0){ |
---|
5097 | freq_intervals[0] ++; |
---|
5098 | } |
---|
5099 | else if(freq_index >= range){ |
---|
5100 | freq_intervals[range - 1] ++; |
---|
5101 | } |
---|
5102 | else{ |
---|
5103 | freq_intervals[freq_index] ++; |
---|
5104 | } |
---|
5105 | offset_count += sampleDistance; |
---|
5106 | if(offset_count >= r3){ |
---|
5107 | n2_count ++; |
---|
5108 | if(n2_count == r2){ |
---|
5109 | n1_count ++; |
---|
5110 | n2_count = 1; |
---|
5111 | data_pos += r3; |
---|
5112 | } |
---|
5113 | offset_count_2 = (n1_count + n2_count) % sampleDistance; |
---|
5114 | data_pos += (r3 + sampleDistance - offset_count) + (sampleDistance - offset_count_2); |
---|
5115 | offset_count = (sampleDistance - offset_count_2); |
---|
5116 | if(offset_count == 0) offset_count ++; |
---|
5117 | } |
---|
5118 | else data_pos += sampleDistance; |
---|
5119 | sample_count ++; |
---|
5120 | } |
---|
5121 | *max_freq = freq_count * 1.0/ sample_count; |
---|
5122 | |
---|
5123 | //compute the appropriate number |
---|
5124 | size_t targetCount = sample_count*predThreshold; |
---|
5125 | size_t sum = 0; |
---|
5126 | for(i=0;i<maxRangeRadius;i++) |
---|
5127 | { |
---|
5128 | sum += intervals[i]; |
---|
5129 | if(sum>targetCount) |
---|
5130 | break; |
---|
5131 | } |
---|
5132 | if(i>=maxRangeRadius) |
---|
5133 | i = maxRangeRadius-1; |
---|
5134 | unsigned int accIntervals = 2*(i+1); |
---|
5135 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
5136 | |
---|
5137 | if(powerOf2<32) |
---|
5138 | powerOf2 = 32; |
---|
5139 | // collect frequency |
---|
5140 | size_t max_sum = 0; |
---|
5141 | size_t max_index = 0; |
---|
5142 | size_t tmp_sum; |
---|
5143 | size_t * freq_pos = freq_intervals + 1; |
---|
5144 | for(size_t i=1; i<range-2; i++){ |
---|
5145 | tmp_sum = freq_pos[0] + freq_pos[1]; |
---|
5146 | if(tmp_sum > max_sum){ |
---|
5147 | max_sum = tmp_sum; |
---|
5148 | max_index = i; |
---|
5149 | } |
---|
5150 | freq_pos ++; |
---|
5151 | } |
---|
5152 | *dense_pos = mean + realPrecision * (ptrdiff_t)(max_index + 1 - radius); |
---|
5153 | *mean_freq = max_sum * 1.0 / sample_count; |
---|
5154 | |
---|
5155 | free(freq_intervals); |
---|
5156 | free(intervals); |
---|
5157 | return powerOf2; |
---|
5158 | } |
---|
5159 | |
---|
5160 | |
---|
5161 | // 3D: modified for higher performance |
---|
5162 | unsigned char * SZ_compress_float_3D_MDQ_nonblocked_with_blocked_regression(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, size_t * comp_size){ |
---|
5163 | |
---|
5164 | #ifdef HAVE_TIMECMPR |
---|
5165 | float* decData = NULL; |
---|
5166 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
5167 | decData = (float*)(multisteps->hist_data); |
---|
5168 | #endif |
---|
5169 | |
---|
5170 | unsigned int quantization_intervals; |
---|
5171 | float sz_sample_correct_freq = -1;//0.5; //-1 |
---|
5172 | float dense_pos; |
---|
5173 | float mean_flush_freq; |
---|
5174 | unsigned char use_mean = 0; |
---|
5175 | |
---|
5176 | // calculate block dims |
---|
5177 | size_t num_x, num_y, num_z; |
---|
5178 | size_t block_size = 6; |
---|
5179 | SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r1, num_x, block_size); |
---|
5180 | SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r2, num_y, block_size); |
---|
5181 | SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r3, num_z, block_size); |
---|
5182 | |
---|
5183 | size_t split_index_x, split_index_y, split_index_z; |
---|
5184 | size_t early_blockcount_x, early_blockcount_y, early_blockcount_z; |
---|
5185 | size_t late_blockcount_x, late_blockcount_y, late_blockcount_z; |
---|
5186 | SZ_COMPUTE_BLOCKCOUNT(r1, num_x, split_index_x, early_blockcount_x, late_blockcount_x); |
---|
5187 | SZ_COMPUTE_BLOCKCOUNT(r2, num_y, split_index_y, early_blockcount_y, late_blockcount_y); |
---|
5188 | SZ_COMPUTE_BLOCKCOUNT(r3, num_z, split_index_z, early_blockcount_z, late_blockcount_z); |
---|
5189 | |
---|
5190 | size_t max_num_block_elements = early_blockcount_x * early_blockcount_y * early_blockcount_z; |
---|
5191 | size_t num_blocks = num_x * num_y * num_z; |
---|
5192 | size_t num_elements = r1 * r2 * r3; |
---|
5193 | |
---|
5194 | size_t dim0_offset = r2 * r3; |
---|
5195 | size_t dim1_offset = r3; |
---|
5196 | |
---|
5197 | int * result_type = (int *) malloc(num_elements * sizeof(int)); |
---|
5198 | size_t unpred_data_max_size = max_num_block_elements; |
---|
5199 | float * result_unpredictable_data = (float *) malloc(unpred_data_max_size * sizeof(float) * num_blocks); |
---|
5200 | size_t total_unpred = 0; |
---|
5201 | size_t unpredictable_count; |
---|
5202 | size_t max_unpred_count = 0; |
---|
5203 | float * data_pos = oriData; |
---|
5204 | int * type = result_type; |
---|
5205 | size_t type_offset; |
---|
5206 | size_t offset_x, offset_y, offset_z; |
---|
5207 | size_t current_blockcount_x, current_blockcount_y, current_blockcount_z; |
---|
5208 | |
---|
5209 | float * reg_params = (float *) malloc(num_blocks * 4 * sizeof(float)); |
---|
5210 | float * reg_params_pos = reg_params; |
---|
5211 | // move regression part out |
---|
5212 | size_t params_offset_b = num_blocks; |
---|
5213 | size_t params_offset_c = 2*num_blocks; |
---|
5214 | size_t params_offset_d = 3*num_blocks; |
---|
5215 | for(size_t i=0; i<num_x; i++){ |
---|
5216 | for(size_t j=0; j<num_y; j++){ |
---|
5217 | for(size_t k=0; k<num_z; k++){ |
---|
5218 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
5219 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
5220 | current_blockcount_z = (k < split_index_z) ? early_blockcount_z : late_blockcount_z; |
---|
5221 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
5222 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
5223 | offset_z = (k < split_index_z) ? k * early_blockcount_z : k * late_blockcount_z + split_index_z; |
---|
5224 | |
---|
5225 | data_pos = oriData + offset_x * dim0_offset + offset_y * dim1_offset + offset_z; |
---|
5226 | /*Calculate regression coefficients*/ |
---|
5227 | { |
---|
5228 | float * cur_data_pos = data_pos; |
---|
5229 | float fx = 0.0; |
---|
5230 | float fy = 0.0; |
---|
5231 | float fz = 0.0; |
---|
5232 | float f = 0; |
---|
5233 | float sum_x, sum_y; |
---|
5234 | float curData; |
---|
5235 | for(size_t i=0; i<current_blockcount_x; i++){ |
---|
5236 | sum_x = 0; |
---|
5237 | for(size_t j=0; j<current_blockcount_y; j++){ |
---|
5238 | sum_y = 0; |
---|
5239 | for(size_t k=0; k<current_blockcount_z; k++){ |
---|
5240 | curData = *cur_data_pos; |
---|
5241 | // f += curData; |
---|
5242 | // fx += curData * i; |
---|
5243 | // fy += curData * j; |
---|
5244 | // fz += curData * k; |
---|
5245 | sum_y += curData; |
---|
5246 | fz += curData * k; |
---|
5247 | cur_data_pos ++; |
---|
5248 | } |
---|
5249 | fy += sum_y * j; |
---|
5250 | sum_x += sum_y; |
---|
5251 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
5252 | } |
---|
5253 | fx += sum_x * i; |
---|
5254 | f += sum_x; |
---|
5255 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
5256 | } |
---|
5257 | float coeff = 1.0 / (current_blockcount_x * current_blockcount_y * current_blockcount_z); |
---|
5258 | reg_params_pos[0] = (2 * fx / (current_blockcount_x - 1) - f) * 6 * coeff / (current_blockcount_x + 1); |
---|
5259 | reg_params_pos[params_offset_b] = (2 * fy / (current_blockcount_y - 1) - f) * 6 * coeff / (current_blockcount_y + 1); |
---|
5260 | reg_params_pos[params_offset_c] = (2 * fz / (current_blockcount_z - 1) - f) * 6 * coeff / (current_blockcount_z + 1); |
---|
5261 | reg_params_pos[params_offset_d] = f * coeff - ((current_blockcount_x - 1) * reg_params_pos[0] / 2 + (current_blockcount_y - 1) * reg_params_pos[params_offset_b] / 2 + (current_blockcount_z - 1) * reg_params_pos[params_offset_c] / 2); |
---|
5262 | } |
---|
5263 | reg_params_pos ++; |
---|
5264 | } |
---|
5265 | } |
---|
5266 | } |
---|
5267 | |
---|
5268 | //Compress coefficient arrays |
---|
5269 | double precision_a, precision_b, precision_c, precision_d; |
---|
5270 | float rel_param_err = 0.025; |
---|
5271 | precision_a = rel_param_err * realPrecision / late_blockcount_x; |
---|
5272 | precision_b = rel_param_err * realPrecision / late_blockcount_y; |
---|
5273 | precision_c = rel_param_err * realPrecision / late_blockcount_z; |
---|
5274 | precision_d = rel_param_err * realPrecision; |
---|
5275 | |
---|
5276 | if(exe_params->optQuantMode==1) |
---|
5277 | { |
---|
5278 | quantization_intervals = optimize_intervals_float_3D_with_freq_and_dense_pos(oriData, r1, r2, r3, realPrecision, &dense_pos, &sz_sample_correct_freq, &mean_flush_freq); |
---|
5279 | if(mean_flush_freq > 0.5 || mean_flush_freq > sz_sample_correct_freq) use_mean = 1; |
---|
5280 | updateQuantizationInfo(quantization_intervals); |
---|
5281 | } |
---|
5282 | else{ |
---|
5283 | quantization_intervals = exe_params->intvCapacity; |
---|
5284 | } |
---|
5285 | |
---|
5286 | float mean = 0; |
---|
5287 | if(use_mean){ |
---|
5288 | // compute mean |
---|
5289 | double sum = 0.0; |
---|
5290 | size_t mean_count = 0; |
---|
5291 | for(size_t i=0; i<num_elements; i++){ |
---|
5292 | if(fabs(oriData[i] - dense_pos) < realPrecision){ |
---|
5293 | sum += oriData[i]; |
---|
5294 | mean_count ++; |
---|
5295 | } |
---|
5296 | } |
---|
5297 | if(mean_count > 0) mean = sum / mean_count; |
---|
5298 | } |
---|
5299 | |
---|
5300 | double tmp_realPrecision = realPrecision; |
---|
5301 | |
---|
5302 | // use two prediction buffers for higher performance |
---|
5303 | float * unpredictable_data = result_unpredictable_data; |
---|
5304 | unsigned char * indicator = (unsigned char *) malloc(num_blocks * sizeof(unsigned char)); |
---|
5305 | memset(indicator, 0, num_blocks * sizeof(unsigned char)); |
---|
5306 | size_t reg_count = 0; |
---|
5307 | size_t strip_dim_0 = early_blockcount_x + 1; |
---|
5308 | size_t strip_dim_1 = r2 + 1; |
---|
5309 | size_t strip_dim_2 = r3 + 1; |
---|
5310 | size_t strip_dim0_offset = strip_dim_1 * strip_dim_2; |
---|
5311 | size_t strip_dim1_offset = strip_dim_2; |
---|
5312 | unsigned char * indicator_pos = indicator; |
---|
5313 | |
---|
5314 | size_t prediction_buffer_size = strip_dim_0 * strip_dim0_offset * sizeof(float); |
---|
5315 | float * prediction_buffer_1 = (float *) malloc(prediction_buffer_size); |
---|
5316 | memset(prediction_buffer_1, 0, prediction_buffer_size); |
---|
5317 | float * prediction_buffer_2 = (float *) malloc(prediction_buffer_size); |
---|
5318 | memset(prediction_buffer_2, 0, prediction_buffer_size); |
---|
5319 | float * cur_pb_buf = prediction_buffer_1; |
---|
5320 | float * next_pb_buf = prediction_buffer_2; |
---|
5321 | float * cur_pb_buf_pos; |
---|
5322 | float * next_pb_buf_pos; |
---|
5323 | int intvCapacity = exe_params->intvCapacity; |
---|
5324 | int intvRadius = exe_params->intvRadius; |
---|
5325 | int use_reg = 0; |
---|
5326 | float noise = realPrecision * 1.22; |
---|
5327 | |
---|
5328 | reg_params_pos = reg_params; |
---|
5329 | // compress the regression coefficients on the fly |
---|
5330 | float last_coeffcients[4] = {0.0}; |
---|
5331 | int coeff_intvCapacity_sz = 65536; |
---|
5332 | int coeff_intvRadius = coeff_intvCapacity_sz / 2; |
---|
5333 | int * coeff_type[4]; |
---|
5334 | int * coeff_result_type = (int *) malloc(num_blocks*4*sizeof(int)); |
---|
5335 | float * coeff_unpred_data[4]; |
---|
5336 | float * coeff_unpredictable_data = (float *) malloc(num_blocks*4*sizeof(float)); |
---|
5337 | double precision[4]; |
---|
5338 | precision[0] = precision_a, precision[1] = precision_b, precision[2] = precision_c, precision[3] = precision_d; |
---|
5339 | for(int i=0; i<4; i++){ |
---|
5340 | coeff_type[i] = coeff_result_type + i * num_blocks; |
---|
5341 | coeff_unpred_data[i] = coeff_unpredictable_data + i * num_blocks; |
---|
5342 | } |
---|
5343 | int coeff_index = 0; |
---|
5344 | unsigned int coeff_unpredictable_count[4] = {0}; |
---|
5345 | |
---|
5346 | if(use_mean){ |
---|
5347 | int intvCapacity_sz = intvCapacity - 2; |
---|
5348 | for(size_t i=0; i<num_x; i++){ |
---|
5349 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
5350 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
5351 | for(size_t j=0; j<num_y; j++){ |
---|
5352 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
5353 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
5354 | data_pos = oriData + offset_x * dim0_offset + offset_y * dim1_offset; |
---|
5355 | type_offset = offset_x * dim0_offset + offset_y * current_blockcount_x * dim1_offset; |
---|
5356 | type = result_type + type_offset; |
---|
5357 | |
---|
5358 | // prediction buffer is (current_block_count_x + 1) * (current_block_count_y + 1) * (current_block_count_z + 1) |
---|
5359 | cur_pb_buf_pos = cur_pb_buf + offset_y * strip_dim1_offset + strip_dim0_offset + strip_dim1_offset + 1; |
---|
5360 | next_pb_buf_pos = next_pb_buf + offset_y * strip_dim1_offset + strip_dim1_offset + 1; |
---|
5361 | |
---|
5362 | size_t current_blockcount_z; |
---|
5363 | float * pb_pos = cur_pb_buf_pos; |
---|
5364 | float * next_pb_pos = next_pb_buf_pos; |
---|
5365 | size_t strip_unpredictable_count = 0; |
---|
5366 | for(size_t k=0; k<num_z; k++){ |
---|
5367 | current_blockcount_z = (k < split_index_z) ? early_blockcount_z : late_blockcount_z; |
---|
5368 | #ifdef HAVE_TIMECMPR |
---|
5369 | size_t offset_z = 0; |
---|
5370 | offset_z = (k < split_index_z) ? k * early_blockcount_z : k * late_blockcount_z + split_index_z; |
---|
5371 | size_t block_offset = offset_x * dim0_offset + offset_y * dim1_offset + offset_z; |
---|
5372 | #endif |
---|
5373 | /*sampling and decide which predictor*/ |
---|
5374 | { |
---|
5375 | // sample point [1, 1, 1] [1, 1, 4] [1, 4, 1] [1, 4, 4] [4, 1, 1] [4, 1, 4] [4, 4, 1] [4, 4, 4] |
---|
5376 | float * cur_data_pos; |
---|
5377 | float curData; |
---|
5378 | float pred_reg, pred_sz; |
---|
5379 | float err_sz = 0.0, err_reg = 0.0; |
---|
5380 | int bmi = 0; |
---|
5381 | if(i>0 && j>0 && k>0){ |
---|
5382 | for(int i=0; i<block_size; i++){ |
---|
5383 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
5384 | curData = *cur_data_pos; |
---|
5385 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5386 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
5387 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
5388 | err_reg += fabs(pred_reg - curData); |
---|
5389 | |
---|
5390 | bmi = block_size - i; |
---|
5391 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
5392 | curData = *cur_data_pos; |
---|
5393 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5394 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
5395 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
5396 | err_reg += fabs(pred_reg - curData); |
---|
5397 | |
---|
5398 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
5399 | curData = *cur_data_pos; |
---|
5400 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5401 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
5402 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
5403 | err_reg += fabs(pred_reg - curData); |
---|
5404 | |
---|
5405 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
5406 | curData = *cur_data_pos; |
---|
5407 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5408 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
5409 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
5410 | err_reg += fabs(pred_reg - curData); |
---|
5411 | } |
---|
5412 | } |
---|
5413 | else{ |
---|
5414 | for(int i=1; i<block_size; i++){ |
---|
5415 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
5416 | curData = *cur_data_pos; |
---|
5417 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5418 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
5419 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
5420 | err_reg += fabs(pred_reg - curData); |
---|
5421 | |
---|
5422 | bmi = block_size - i; |
---|
5423 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
5424 | curData = *cur_data_pos; |
---|
5425 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5426 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
5427 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
5428 | err_reg += fabs(pred_reg - curData); |
---|
5429 | |
---|
5430 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
5431 | curData = *cur_data_pos; |
---|
5432 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5433 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
5434 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
5435 | err_reg += fabs(pred_reg - curData); |
---|
5436 | |
---|
5437 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
5438 | curData = *cur_data_pos; |
---|
5439 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5440 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
5441 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
5442 | err_reg += fabs(pred_reg - curData); |
---|
5443 | |
---|
5444 | } |
---|
5445 | } |
---|
5446 | use_reg = (err_reg < err_sz); |
---|
5447 | } |
---|
5448 | if(use_reg){ |
---|
5449 | { |
---|
5450 | /*predict coefficients in current block via previous reg_block*/ |
---|
5451 | float cur_coeff; |
---|
5452 | double diff, itvNum; |
---|
5453 | for(int e=0; e<4; e++){ |
---|
5454 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
5455 | diff = cur_coeff - last_coeffcients[e]; |
---|
5456 | itvNum = fabs(diff)/precision[e] + 1; |
---|
5457 | if (itvNum < coeff_intvCapacity_sz){ |
---|
5458 | if (diff < 0) itvNum = -itvNum; |
---|
5459 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
5460 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
5461 | //ganrantee comporession error against the case of machine-epsilon |
---|
5462 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
5463 | coeff_type[e][coeff_index] = 0; |
---|
5464 | last_coeffcients[e] = cur_coeff; |
---|
5465 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
5466 | } |
---|
5467 | } |
---|
5468 | else{ |
---|
5469 | coeff_type[e][coeff_index] = 0; |
---|
5470 | last_coeffcients[e] = cur_coeff; |
---|
5471 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
5472 | } |
---|
5473 | } |
---|
5474 | coeff_index ++; |
---|
5475 | } |
---|
5476 | float curData; |
---|
5477 | float pred; |
---|
5478 | double itvNum; |
---|
5479 | double diff; |
---|
5480 | size_t index = 0; |
---|
5481 | size_t block_unpredictable_count = 0; |
---|
5482 | float * cur_data_pos = data_pos; |
---|
5483 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
5484 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
5485 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
5486 | curData = *cur_data_pos; |
---|
5487 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
5488 | diff = curData - pred; |
---|
5489 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
5490 | if (itvNum < intvCapacity){ |
---|
5491 | if (diff < 0) itvNum = -itvNum; |
---|
5492 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
5493 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
5494 | //ganrantee comporession error against the case of machine-epsilon |
---|
5495 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
5496 | type[index] = 0; |
---|
5497 | pred = curData; |
---|
5498 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
5499 | } |
---|
5500 | } |
---|
5501 | else{ |
---|
5502 | type[index] = 0; |
---|
5503 | pred = curData; |
---|
5504 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
5505 | } |
---|
5506 | |
---|
5507 | #ifdef HAVE_TIMECMPR |
---|
5508 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
5509 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
5510 | decData[block_offset + point_offset] = pred; |
---|
5511 | #endif |
---|
5512 | |
---|
5513 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
5514 | // assign value to block surfaces |
---|
5515 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
5516 | } |
---|
5517 | index ++; |
---|
5518 | cur_data_pos ++; |
---|
5519 | } |
---|
5520 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
5521 | } |
---|
5522 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
5523 | } |
---|
5524 | /*dealing with the last ii (boundary)*/ |
---|
5525 | { |
---|
5526 | // ii == current_blockcount_x - 1 |
---|
5527 | size_t ii = current_blockcount_x - 1; |
---|
5528 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
5529 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
5530 | curData = *cur_data_pos; |
---|
5531 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
5532 | diff = curData - pred; |
---|
5533 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
5534 | if (itvNum < intvCapacity){ |
---|
5535 | if (diff < 0) itvNum = -itvNum; |
---|
5536 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
5537 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
5538 | //ganrantee comporession error against the case of machine-epsilon |
---|
5539 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
5540 | type[index] = 0; |
---|
5541 | pred = curData; |
---|
5542 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
5543 | } |
---|
5544 | } |
---|
5545 | else{ |
---|
5546 | type[index] = 0; |
---|
5547 | pred = curData; |
---|
5548 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
5549 | } |
---|
5550 | |
---|
5551 | #ifdef HAVE_TIMECMPR |
---|
5552 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
5553 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
5554 | decData[block_offset + point_offset] = pred; |
---|
5555 | #endif |
---|
5556 | |
---|
5557 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
5558 | // assign value to block surfaces |
---|
5559 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
5560 | } |
---|
5561 | // assign value to next prediction buffer |
---|
5562 | next_pb_pos[jj * strip_dim1_offset + kk] = pred; |
---|
5563 | index ++; |
---|
5564 | cur_data_pos ++; |
---|
5565 | } |
---|
5566 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
5567 | } |
---|
5568 | } |
---|
5569 | unpredictable_count = block_unpredictable_count; |
---|
5570 | strip_unpredictable_count += unpredictable_count; |
---|
5571 | unpredictable_data += unpredictable_count; |
---|
5572 | |
---|
5573 | reg_count ++; |
---|
5574 | } |
---|
5575 | else{ |
---|
5576 | // use SZ |
---|
5577 | // SZ predication |
---|
5578 | unpredictable_count = 0; |
---|
5579 | float * cur_pb_pos = pb_pos; |
---|
5580 | float * cur_data_pos = data_pos; |
---|
5581 | float curData; |
---|
5582 | float pred3D; |
---|
5583 | double itvNum, diff; |
---|
5584 | size_t index = 0; |
---|
5585 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
5586 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
5587 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
5588 | |
---|
5589 | curData = *cur_data_pos; |
---|
5590 | if(fabs(curData - mean) <= realPrecision){ |
---|
5591 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
5592 | type[index] = intvRadius; |
---|
5593 | *cur_pb_pos = mean; |
---|
5594 | } |
---|
5595 | else |
---|
5596 | { |
---|
5597 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
5598 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
5599 | diff = curData - pred3D; |
---|
5600 | itvNum = fabs(diff)/realPrecision + 1; |
---|
5601 | if (itvNum < intvCapacity_sz){ |
---|
5602 | if (diff < 0) itvNum = -itvNum; |
---|
5603 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
5604 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
5605 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
5606 | //ganrantee comporession error against the case of machine-epsilon |
---|
5607 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
5608 | type[index] = 0; |
---|
5609 | *cur_pb_pos = curData; |
---|
5610 | unpredictable_data[unpredictable_count ++] = curData; |
---|
5611 | } |
---|
5612 | } |
---|
5613 | else{ |
---|
5614 | type[index] = 0; |
---|
5615 | *cur_pb_pos = curData; |
---|
5616 | unpredictable_data[unpredictable_count ++] = curData; |
---|
5617 | } |
---|
5618 | } |
---|
5619 | #ifdef HAVE_TIMECMPR |
---|
5620 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
5621 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
5622 | decData[block_offset + point_offset] = *cur_pb_pos; |
---|
5623 | #endif |
---|
5624 | |
---|
5625 | index ++; |
---|
5626 | cur_pb_pos ++; |
---|
5627 | cur_data_pos ++; |
---|
5628 | } |
---|
5629 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
5630 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
5631 | } |
---|
5632 | cur_pb_pos += strip_dim0_offset - current_blockcount_y * strip_dim1_offset; |
---|
5633 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
5634 | } |
---|
5635 | /*dealing with the last ii (boundary)*/ |
---|
5636 | { |
---|
5637 | // ii == current_blockcount_x - 1 |
---|
5638 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
5639 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
5640 | |
---|
5641 | curData = *cur_data_pos; |
---|
5642 | if(fabs(curData - mean) <= realPrecision){ |
---|
5643 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
5644 | type[index] = intvRadius; |
---|
5645 | *cur_pb_pos = mean; |
---|
5646 | } |
---|
5647 | else |
---|
5648 | { |
---|
5649 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
5650 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
5651 | diff = curData - pred3D; |
---|
5652 | itvNum = fabs(diff)/realPrecision + 1; |
---|
5653 | if (itvNum < intvCapacity_sz){ |
---|
5654 | if (diff < 0) itvNum = -itvNum; |
---|
5655 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
5656 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
5657 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
5658 | //ganrantee comporession error against the case of machine-epsilon |
---|
5659 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
5660 | type[index] = 0; |
---|
5661 | *cur_pb_pos = curData; |
---|
5662 | unpredictable_data[unpredictable_count ++] = curData; |
---|
5663 | } |
---|
5664 | } |
---|
5665 | else{ |
---|
5666 | type[index] = 0; |
---|
5667 | *cur_pb_pos = curData; |
---|
5668 | unpredictable_data[unpredictable_count ++] = curData; |
---|
5669 | } |
---|
5670 | } |
---|
5671 | #ifdef HAVE_TIMECMPR |
---|
5672 | size_t ii = current_blockcount_x - 1; |
---|
5673 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
5674 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
5675 | decData[block_offset + point_offset] = *cur_pb_pos; |
---|
5676 | #endif |
---|
5677 | |
---|
5678 | next_pb_pos[jj * strip_dim1_offset + kk] = *cur_pb_pos; |
---|
5679 | index ++; |
---|
5680 | cur_pb_pos ++; |
---|
5681 | cur_data_pos ++; |
---|
5682 | } |
---|
5683 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
5684 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
5685 | } |
---|
5686 | } |
---|
5687 | strip_unpredictable_count += unpredictable_count; |
---|
5688 | unpredictable_data += unpredictable_count; |
---|
5689 | // change indicator |
---|
5690 | indicator_pos[k] = 1; |
---|
5691 | }// end SZ |
---|
5692 | |
---|
5693 | reg_params_pos ++; |
---|
5694 | data_pos += current_blockcount_z; |
---|
5695 | pb_pos += current_blockcount_z; |
---|
5696 | next_pb_pos += current_blockcount_z; |
---|
5697 | type += current_blockcount_x * current_blockcount_y * current_blockcount_z; |
---|
5698 | |
---|
5699 | } // end k |
---|
5700 | |
---|
5701 | if(strip_unpredictable_count > max_unpred_count){ |
---|
5702 | max_unpred_count = strip_unpredictable_count; |
---|
5703 | } |
---|
5704 | total_unpred += strip_unpredictable_count; |
---|
5705 | indicator_pos += num_z; |
---|
5706 | }// end j |
---|
5707 | float * tmp; |
---|
5708 | tmp = cur_pb_buf; |
---|
5709 | cur_pb_buf = next_pb_buf; |
---|
5710 | next_pb_buf = tmp; |
---|
5711 | }// end i |
---|
5712 | } |
---|
5713 | else{ |
---|
5714 | int intvCapacity_sz = intvCapacity - 2; |
---|
5715 | for(size_t i=0; i<num_x; i++){ |
---|
5716 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
5717 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
5718 | |
---|
5719 | for(size_t j=0; j<num_y; j++){ |
---|
5720 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
5721 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
5722 | data_pos = oriData + offset_x * dim0_offset + offset_y * dim1_offset; |
---|
5723 | // copy bottom plane from plane buffer |
---|
5724 | // memcpy(prediction_buffer, bottom_buffer + offset_y * strip_dim1_offset, (current_blockcount_y + 1) * strip_dim1_offset * sizeof(float)); |
---|
5725 | type_offset = offset_x * dim0_offset + offset_y * current_blockcount_x * dim1_offset; |
---|
5726 | type = result_type + type_offset; |
---|
5727 | |
---|
5728 | // prediction buffer is (current_block_count_x + 1) * (current_block_count_y + 1) * (current_block_count_z + 1) |
---|
5729 | cur_pb_buf_pos = cur_pb_buf + offset_y * strip_dim1_offset + strip_dim0_offset + strip_dim1_offset + 1; |
---|
5730 | next_pb_buf_pos = next_pb_buf + offset_y * strip_dim1_offset + strip_dim1_offset + 1; |
---|
5731 | |
---|
5732 | size_t current_blockcount_z; |
---|
5733 | float * pb_pos = cur_pb_buf_pos; |
---|
5734 | float * next_pb_pos = next_pb_buf_pos; |
---|
5735 | size_t strip_unpredictable_count = 0; |
---|
5736 | for(size_t k=0; k<num_z; k++){ |
---|
5737 | current_blockcount_z = (k < split_index_z) ? early_blockcount_z : late_blockcount_z; |
---|
5738 | #ifdef HAVE_TIMECMPR |
---|
5739 | size_t offset_z = 0; |
---|
5740 | offset_z = (k < split_index_z) ? k * early_blockcount_z : k * late_blockcount_z + split_index_z; |
---|
5741 | size_t block_offset = offset_x * dim0_offset + offset_y * dim1_offset + offset_z; |
---|
5742 | #endif |
---|
5743 | /*sampling*/ |
---|
5744 | { |
---|
5745 | // sample point [1, 1, 1] [1, 1, 4] [1, 4, 1] [1, 4, 4] [4, 1, 1] [4, 1, 4] [4, 4, 1] [4, 4, 4] |
---|
5746 | float * cur_data_pos; |
---|
5747 | float curData; |
---|
5748 | float pred_reg, pred_sz; |
---|
5749 | float err_sz = 0.0, err_reg = 0.0; |
---|
5750 | int bmi; |
---|
5751 | if(i>0 && j>0 && k>0){ |
---|
5752 | for(int i=0; i<block_size; i++){ |
---|
5753 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
5754 | curData = *cur_data_pos; |
---|
5755 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5756 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
5757 | err_sz += fabs(pred_sz - curData) + noise; |
---|
5758 | err_reg += fabs(pred_reg - curData); |
---|
5759 | |
---|
5760 | bmi = block_size - i; |
---|
5761 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
5762 | curData = *cur_data_pos; |
---|
5763 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5764 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
5765 | err_sz += fabs(pred_sz - curData) + noise; |
---|
5766 | err_reg += fabs(pred_reg - curData); |
---|
5767 | |
---|
5768 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
5769 | curData = *cur_data_pos; |
---|
5770 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5771 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
5772 | err_sz += fabs(pred_sz - curData) + noise; |
---|
5773 | err_reg += fabs(pred_reg - curData); |
---|
5774 | |
---|
5775 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
5776 | curData = *cur_data_pos; |
---|
5777 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5778 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
5779 | err_sz += fabs(pred_sz - curData) + noise; |
---|
5780 | err_reg += fabs(pred_reg - curData); |
---|
5781 | } |
---|
5782 | } |
---|
5783 | else{ |
---|
5784 | for(int i=1; i<block_size; i++){ |
---|
5785 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
5786 | curData = *cur_data_pos; |
---|
5787 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5788 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
5789 | err_sz += fabs(pred_sz - curData) + noise; |
---|
5790 | err_reg += fabs(pred_reg - curData); |
---|
5791 | |
---|
5792 | bmi = block_size - i; |
---|
5793 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
5794 | curData = *cur_data_pos; |
---|
5795 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5796 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
5797 | err_sz += fabs(pred_sz - curData) + noise; |
---|
5798 | err_reg += fabs(pred_reg - curData); |
---|
5799 | |
---|
5800 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
5801 | curData = *cur_data_pos; |
---|
5802 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5803 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
5804 | err_sz += fabs(pred_sz - curData) + noise; |
---|
5805 | err_reg += fabs(pred_reg - curData); |
---|
5806 | |
---|
5807 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
5808 | curData = *cur_data_pos; |
---|
5809 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
5810 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
5811 | err_sz += fabs(pred_sz - curData) + noise; |
---|
5812 | err_reg += fabs(pred_reg - curData); |
---|
5813 | } |
---|
5814 | } |
---|
5815 | use_reg = (err_reg < err_sz); |
---|
5816 | |
---|
5817 | } |
---|
5818 | if(use_reg) |
---|
5819 | { |
---|
5820 | { |
---|
5821 | /*predict coefficients in current block via previous reg_block*/ |
---|
5822 | float cur_coeff; |
---|
5823 | double diff, itvNum; |
---|
5824 | for(int e=0; e<4; e++){ |
---|
5825 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
5826 | diff = cur_coeff - last_coeffcients[e]; |
---|
5827 | itvNum = fabs(diff)/precision[e] + 1; |
---|
5828 | if (itvNum < coeff_intvCapacity_sz){ |
---|
5829 | if (diff < 0) itvNum = -itvNum; |
---|
5830 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
5831 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
5832 | //ganrantee comporession error against the case of machine-epsilon |
---|
5833 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
5834 | coeff_type[e][coeff_index] = 0; |
---|
5835 | last_coeffcients[e] = cur_coeff; |
---|
5836 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
5837 | } |
---|
5838 | } |
---|
5839 | else{ |
---|
5840 | coeff_type[e][coeff_index] = 0; |
---|
5841 | last_coeffcients[e] = cur_coeff; |
---|
5842 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
5843 | } |
---|
5844 | } |
---|
5845 | coeff_index ++; |
---|
5846 | } |
---|
5847 | float curData; |
---|
5848 | float pred; |
---|
5849 | double itvNum; |
---|
5850 | double diff; |
---|
5851 | size_t index = 0; |
---|
5852 | size_t block_unpredictable_count = 0; |
---|
5853 | float * cur_data_pos = data_pos; |
---|
5854 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
5855 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
5856 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
5857 | |
---|
5858 | curData = *cur_data_pos; |
---|
5859 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
5860 | diff = curData - pred; |
---|
5861 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
5862 | if (itvNum < intvCapacity){ |
---|
5863 | if (diff < 0) itvNum = -itvNum; |
---|
5864 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
5865 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
5866 | //ganrantee comporession error against the case of machine-epsilon |
---|
5867 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
5868 | type[index] = 0; |
---|
5869 | pred = curData; |
---|
5870 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
5871 | } |
---|
5872 | } |
---|
5873 | else{ |
---|
5874 | type[index] = 0; |
---|
5875 | pred = curData; |
---|
5876 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
5877 | } |
---|
5878 | |
---|
5879 | #ifdef HAVE_TIMECMPR |
---|
5880 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
5881 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
5882 | decData[block_offset + point_offset] = pred; |
---|
5883 | #endif |
---|
5884 | |
---|
5885 | |
---|
5886 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
5887 | // assign value to block surfaces |
---|
5888 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
5889 | } |
---|
5890 | index ++; |
---|
5891 | cur_data_pos ++; |
---|
5892 | } |
---|
5893 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
5894 | } |
---|
5895 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
5896 | } |
---|
5897 | /*dealing with the last ii (boundary)*/ |
---|
5898 | { |
---|
5899 | // ii == current_blockcount_x - 1 |
---|
5900 | size_t ii = current_blockcount_x - 1; |
---|
5901 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
5902 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
5903 | curData = *cur_data_pos; |
---|
5904 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
5905 | diff = curData - pred; |
---|
5906 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
5907 | if (itvNum < intvCapacity){ |
---|
5908 | if (diff < 0) itvNum = -itvNum; |
---|
5909 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
5910 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
5911 | //ganrantee comporession error against the case of machine-epsilon |
---|
5912 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
5913 | type[index] = 0; |
---|
5914 | pred = curData; |
---|
5915 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
5916 | } |
---|
5917 | } |
---|
5918 | else{ |
---|
5919 | type[index] = 0; |
---|
5920 | pred = curData; |
---|
5921 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
5922 | } |
---|
5923 | |
---|
5924 | #ifdef HAVE_TIMECMPR |
---|
5925 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
5926 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
5927 | decData[block_offset + point_offset] = pred; |
---|
5928 | #endif |
---|
5929 | |
---|
5930 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
5931 | // assign value to block surfaces |
---|
5932 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
5933 | } |
---|
5934 | // assign value to next prediction buffer |
---|
5935 | next_pb_pos[jj * strip_dim1_offset + kk] = pred; |
---|
5936 | index ++; |
---|
5937 | cur_data_pos ++; |
---|
5938 | } |
---|
5939 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
5940 | } |
---|
5941 | } |
---|
5942 | unpredictable_count = block_unpredictable_count; |
---|
5943 | strip_unpredictable_count += unpredictable_count; |
---|
5944 | unpredictable_data += unpredictable_count; |
---|
5945 | reg_count ++; |
---|
5946 | } |
---|
5947 | else{ |
---|
5948 | // use SZ |
---|
5949 | // SZ predication |
---|
5950 | unpredictable_count = 0; |
---|
5951 | float * cur_pb_pos = pb_pos; |
---|
5952 | float * cur_data_pos = data_pos; |
---|
5953 | float curData; |
---|
5954 | float pred3D; |
---|
5955 | double itvNum, diff; |
---|
5956 | size_t index = 0; |
---|
5957 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
5958 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
5959 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
5960 | |
---|
5961 | curData = *cur_data_pos; |
---|
5962 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
5963 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
5964 | diff = curData - pred3D; |
---|
5965 | itvNum = fabs(diff)/realPrecision + 1; |
---|
5966 | if (itvNum < intvCapacity_sz){ |
---|
5967 | if (diff < 0) itvNum = -itvNum; |
---|
5968 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
5969 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
5970 | //ganrantee comporession error against the case of machine-epsilon |
---|
5971 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
5972 | type[index] = 0; |
---|
5973 | *cur_pb_pos = curData; |
---|
5974 | unpredictable_data[unpredictable_count ++] = curData; |
---|
5975 | } |
---|
5976 | } |
---|
5977 | else{ |
---|
5978 | type[index] = 0; |
---|
5979 | *cur_pb_pos = curData; |
---|
5980 | unpredictable_data[unpredictable_count ++] = curData; |
---|
5981 | } |
---|
5982 | |
---|
5983 | #ifdef HAVE_TIMECMPR |
---|
5984 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
5985 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
5986 | decData[block_offset + point_offset] = *cur_pb_pos; |
---|
5987 | #endif |
---|
5988 | index ++; |
---|
5989 | cur_pb_pos ++; |
---|
5990 | cur_data_pos ++; |
---|
5991 | } |
---|
5992 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
5993 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
5994 | } |
---|
5995 | cur_pb_pos += strip_dim0_offset - current_blockcount_y * strip_dim1_offset; |
---|
5996 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
5997 | } |
---|
5998 | /*dealing with the last ii (boundary)*/ |
---|
5999 | { |
---|
6000 | // ii == current_blockcount_x - 1 |
---|
6001 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
6002 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
6003 | |
---|
6004 | curData = *cur_data_pos; |
---|
6005 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
6006 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6007 | diff = curData - pred3D; |
---|
6008 | itvNum = fabs(diff)/realPrecision + 1; |
---|
6009 | if (itvNum < intvCapacity_sz){ |
---|
6010 | if (diff < 0) itvNum = -itvNum; |
---|
6011 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
6012 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
6013 | //ganrantee comporession error against the case of machine-epsilon |
---|
6014 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
6015 | type[index] = 0; |
---|
6016 | *cur_pb_pos = curData; |
---|
6017 | unpredictable_data[unpredictable_count ++] = curData; |
---|
6018 | } |
---|
6019 | } |
---|
6020 | else{ |
---|
6021 | type[index] = 0; |
---|
6022 | *cur_pb_pos = curData; |
---|
6023 | unpredictable_data[unpredictable_count ++] = curData; |
---|
6024 | } |
---|
6025 | |
---|
6026 | #ifdef HAVE_TIMECMPR |
---|
6027 | size_t ii = current_blockcount_x - 1; |
---|
6028 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
6029 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
6030 | decData[block_offset + point_offset] = *cur_pb_pos; |
---|
6031 | #endif |
---|
6032 | |
---|
6033 | // assign value to next prediction buffer |
---|
6034 | next_pb_pos[jj * strip_dim1_offset + kk] = *cur_pb_pos; |
---|
6035 | index ++; |
---|
6036 | cur_pb_pos ++; |
---|
6037 | cur_data_pos ++; |
---|
6038 | } |
---|
6039 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
6040 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
6041 | } |
---|
6042 | } |
---|
6043 | strip_unpredictable_count += unpredictable_count; |
---|
6044 | unpredictable_data += unpredictable_count; |
---|
6045 | // change indicator |
---|
6046 | indicator_pos[k] = 1; |
---|
6047 | }// end SZ |
---|
6048 | |
---|
6049 | reg_params_pos ++; |
---|
6050 | data_pos += current_blockcount_z; |
---|
6051 | pb_pos += current_blockcount_z; |
---|
6052 | next_pb_pos += current_blockcount_z; |
---|
6053 | type += current_blockcount_x * current_blockcount_y * current_blockcount_z; |
---|
6054 | |
---|
6055 | } |
---|
6056 | |
---|
6057 | if(strip_unpredictable_count > max_unpred_count){ |
---|
6058 | max_unpred_count = strip_unpredictable_count; |
---|
6059 | } |
---|
6060 | total_unpred += strip_unpredictable_count; |
---|
6061 | indicator_pos += num_z; |
---|
6062 | } |
---|
6063 | float * tmp; |
---|
6064 | tmp = cur_pb_buf; |
---|
6065 | cur_pb_buf = next_pb_buf; |
---|
6066 | next_pb_buf = tmp; |
---|
6067 | } |
---|
6068 | } |
---|
6069 | |
---|
6070 | free(prediction_buffer_1); |
---|
6071 | free(prediction_buffer_2); |
---|
6072 | |
---|
6073 | int stateNum = 2*quantization_intervals; |
---|
6074 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
6075 | |
---|
6076 | size_t nodeCount = 0; |
---|
6077 | init(huffmanTree, result_type, num_elements); |
---|
6078 | size_t i = 0; |
---|
6079 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
6080 | if (huffmanTree->code[i]) nodeCount++; |
---|
6081 | nodeCount = nodeCount*2-1; |
---|
6082 | |
---|
6083 | unsigned char *treeBytes; |
---|
6084 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
6085 | |
---|
6086 | unsigned int meta_data_offset = 3 + 1 + MetaDataByteLength; |
---|
6087 | // total size metadata # elements real precision intervals nodeCount huffman block index unpredicatable count mean unpred size elements |
---|
6088 | unsigned char * result = (unsigned char *) calloc(meta_data_offset + exe_params->SZ_SIZE_TYPE + sizeof(double) + sizeof(int) + sizeof(int) + treeByteSize + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(float) + total_unpred * sizeof(float) + num_elements * sizeof(int), 1); |
---|
6089 | unsigned char * result_pos = result; |
---|
6090 | initRandomAccessBytes(result_pos); |
---|
6091 | |
---|
6092 | result_pos += meta_data_offset; |
---|
6093 | |
---|
6094 | sizeToBytes(result_pos,num_elements); //SZ_SIZE_TYPE: 4 or 8 |
---|
6095 | result_pos += exe_params->SZ_SIZE_TYPE; |
---|
6096 | |
---|
6097 | intToBytes_bigEndian(result_pos, block_size); |
---|
6098 | result_pos += sizeof(int); |
---|
6099 | doubleToBytes(result_pos, realPrecision); |
---|
6100 | result_pos += sizeof(double); |
---|
6101 | intToBytes_bigEndian(result_pos, quantization_intervals); |
---|
6102 | result_pos += sizeof(int); |
---|
6103 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
6104 | result_pos += sizeof(int); |
---|
6105 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
6106 | result_pos += sizeof(int); |
---|
6107 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
6108 | result_pos += treeByteSize; |
---|
6109 | free(treeBytes); |
---|
6110 | |
---|
6111 | memcpy(result_pos, &use_mean, sizeof(unsigned char)); |
---|
6112 | result_pos += sizeof(unsigned char); |
---|
6113 | memcpy(result_pos, &mean, sizeof(float)); |
---|
6114 | result_pos += sizeof(float); |
---|
6115 | size_t indicator_size = convertIntArray2ByteArray_fast_1b_to_result(indicator, num_blocks, result_pos); |
---|
6116 | result_pos += indicator_size; |
---|
6117 | |
---|
6118 | //convert the lead/mid/resi to byte stream |
---|
6119 | if(reg_count > 0){ |
---|
6120 | for(int e=0; e<4; e++){ |
---|
6121 | int stateNum = 2*coeff_intvCapacity_sz; |
---|
6122 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
6123 | size_t nodeCount = 0; |
---|
6124 | init(huffmanTree, coeff_type[e], reg_count); |
---|
6125 | size_t i = 0; |
---|
6126 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
6127 | if (huffmanTree->code[i]) nodeCount++; |
---|
6128 | nodeCount = nodeCount*2-1; |
---|
6129 | unsigned char *treeBytes; |
---|
6130 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
6131 | doubleToBytes(result_pos, precision[e]); |
---|
6132 | result_pos += sizeof(double); |
---|
6133 | intToBytes_bigEndian(result_pos, coeff_intvRadius); |
---|
6134 | result_pos += sizeof(int); |
---|
6135 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
6136 | result_pos += sizeof(int); |
---|
6137 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
6138 | result_pos += sizeof(int); |
---|
6139 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
6140 | result_pos += treeByteSize; |
---|
6141 | free(treeBytes); |
---|
6142 | size_t typeArray_size = 0; |
---|
6143 | encode(huffmanTree, coeff_type[e], reg_count, result_pos + sizeof(size_t), &typeArray_size); |
---|
6144 | sizeToBytes(result_pos, typeArray_size); |
---|
6145 | result_pos += sizeof(size_t) + typeArray_size; |
---|
6146 | intToBytes_bigEndian(result_pos, coeff_unpredictable_count[e]); |
---|
6147 | result_pos += sizeof(int); |
---|
6148 | memcpy(result_pos, coeff_unpred_data[e], coeff_unpredictable_count[e]*sizeof(float)); |
---|
6149 | result_pos += coeff_unpredictable_count[e]*sizeof(float); |
---|
6150 | SZ_ReleaseHuffman(huffmanTree); |
---|
6151 | } |
---|
6152 | } |
---|
6153 | free(coeff_result_type); |
---|
6154 | free(coeff_unpredictable_data); |
---|
6155 | |
---|
6156 | //record the number of unpredictable data and also store them |
---|
6157 | memcpy(result_pos, &total_unpred, sizeof(size_t)); |
---|
6158 | result_pos += sizeof(size_t); |
---|
6159 | memcpy(result_pos, result_unpredictable_data, total_unpred * sizeof(float)); |
---|
6160 | result_pos += total_unpred * sizeof(float); |
---|
6161 | size_t typeArray_size = 0; |
---|
6162 | encode(huffmanTree, result_type, num_elements, result_pos, &typeArray_size); |
---|
6163 | result_pos += typeArray_size; |
---|
6164 | size_t totalEncodeSize = result_pos - result; |
---|
6165 | free(indicator); |
---|
6166 | free(result_unpredictable_data); |
---|
6167 | free(result_type); |
---|
6168 | free(reg_params); |
---|
6169 | |
---|
6170 | |
---|
6171 | SZ_ReleaseHuffman(huffmanTree); |
---|
6172 | *comp_size = totalEncodeSize; |
---|
6173 | return result; |
---|
6174 | } |
---|
6175 | |
---|
6176 | unsigned char * SZ_compress_float_3D_MDQ_random_access_with_blocked_regression(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, size_t * comp_size){ |
---|
6177 | |
---|
6178 | unsigned int quantization_intervals; |
---|
6179 | float sz_sample_correct_freq = -1;//0.5; //-1 |
---|
6180 | float dense_pos; |
---|
6181 | float mean_flush_freq; |
---|
6182 | unsigned char use_mean = 0; |
---|
6183 | |
---|
6184 | // calculate block dims |
---|
6185 | size_t num_x, num_y, num_z; |
---|
6186 | size_t block_size = 6; |
---|
6187 | num_x = (r1 - 1) / block_size + 1; |
---|
6188 | num_y = (r2 - 1) / block_size + 1; |
---|
6189 | num_z = (r3 - 1) / block_size + 1; |
---|
6190 | |
---|
6191 | size_t max_num_block_elements = block_size * block_size * block_size; |
---|
6192 | size_t num_blocks = num_x * num_y * num_z; |
---|
6193 | size_t num_elements = r1 * r2 * r3; |
---|
6194 | |
---|
6195 | size_t dim0_offset = r2 * r3; |
---|
6196 | size_t dim1_offset = r3; |
---|
6197 | |
---|
6198 | int * result_type = (int *) malloc(num_blocks*max_num_block_elements * sizeof(int)); |
---|
6199 | size_t unpred_data_max_size = max_num_block_elements; |
---|
6200 | float * result_unpredictable_data = (float *) malloc(unpred_data_max_size * sizeof(float) * num_blocks); |
---|
6201 | size_t total_unpred = 0; |
---|
6202 | size_t unpredictable_count; |
---|
6203 | float * data_pos = oriData; |
---|
6204 | int * type = result_type; |
---|
6205 | float * reg_params = (float *) malloc(num_blocks * 4 * sizeof(float)); |
---|
6206 | float * reg_params_pos = reg_params; |
---|
6207 | // move regression part out |
---|
6208 | size_t params_offset_b = num_blocks; |
---|
6209 | size_t params_offset_c = 2*num_blocks; |
---|
6210 | size_t params_offset_d = 3*num_blocks; |
---|
6211 | float * pred_buffer = (float *) malloc((block_size+1)*(block_size+1)*(block_size+1)*sizeof(float)); |
---|
6212 | float * pred_buffer_pos = NULL; |
---|
6213 | float * block_data_pos_x = NULL; |
---|
6214 | float * block_data_pos_y = NULL; |
---|
6215 | float * block_data_pos_z = NULL; |
---|
6216 | for(size_t i=0; i<num_x; i++){ |
---|
6217 | for(size_t j=0; j<num_y; j++){ |
---|
6218 | for(size_t k=0; k<num_z; k++){ |
---|
6219 | data_pos = oriData + i*block_size * dim0_offset + j*block_size * dim1_offset + k*block_size; |
---|
6220 | pred_buffer_pos = pred_buffer; |
---|
6221 | block_data_pos_x = data_pos; |
---|
6222 | // use the buffer as block_size*block_size*block_size |
---|
6223 | for(int ii=0; ii<block_size; ii++){ |
---|
6224 | block_data_pos_y = block_data_pos_x; |
---|
6225 | for(int jj=0; jj<block_size; jj++){ |
---|
6226 | block_data_pos_z = block_data_pos_y; |
---|
6227 | for(int kk=0; kk<block_size; kk++){ |
---|
6228 | *pred_buffer_pos = *block_data_pos_z; |
---|
6229 | if(k*block_size + kk + 1 < r3) block_data_pos_z ++; |
---|
6230 | pred_buffer_pos ++; |
---|
6231 | } |
---|
6232 | if(j*block_size + jj + 1 < r2) block_data_pos_y += dim1_offset; |
---|
6233 | } |
---|
6234 | if(i*block_size + ii + 1 < r1) block_data_pos_x += dim0_offset; |
---|
6235 | } |
---|
6236 | /*Calculate regression coefficients*/ |
---|
6237 | { |
---|
6238 | float * cur_data_pos = pred_buffer; |
---|
6239 | float fx = 0.0; |
---|
6240 | float fy = 0.0; |
---|
6241 | float fz = 0.0; |
---|
6242 | float f = 0; |
---|
6243 | float sum_x, sum_y; |
---|
6244 | float curData; |
---|
6245 | for(size_t i=0; i<block_size; i++){ |
---|
6246 | sum_x = 0; |
---|
6247 | for(size_t j=0; j<block_size; j++){ |
---|
6248 | sum_y = 0; |
---|
6249 | for(size_t k=0; k<block_size; k++){ |
---|
6250 | curData = *cur_data_pos; |
---|
6251 | sum_y += curData; |
---|
6252 | fz += curData * k; |
---|
6253 | cur_data_pos ++; |
---|
6254 | } |
---|
6255 | fy += sum_y * j; |
---|
6256 | sum_x += sum_y; |
---|
6257 | } |
---|
6258 | fx += sum_x * i; |
---|
6259 | f += sum_x; |
---|
6260 | } |
---|
6261 | float coeff = 1.0 / (block_size * block_size * block_size); |
---|
6262 | reg_params_pos[0] = (2 * fx / (block_size - 1) - f) * 6 * coeff / (block_size + 1); |
---|
6263 | reg_params_pos[params_offset_b] = (2 * fy / (block_size - 1) - f) * 6 * coeff / (block_size + 1); |
---|
6264 | reg_params_pos[params_offset_c] = (2 * fz / (block_size - 1) - f) * 6 * coeff / (block_size + 1); |
---|
6265 | reg_params_pos[params_offset_d] = f * coeff - ((block_size - 1) * reg_params_pos[0] / 2 + (block_size - 1) * reg_params_pos[params_offset_b] / 2 + (block_size - 1) * reg_params_pos[params_offset_c] / 2); |
---|
6266 | } |
---|
6267 | reg_params_pos ++; |
---|
6268 | } |
---|
6269 | } |
---|
6270 | } |
---|
6271 | |
---|
6272 | //Compress coefficient arrays |
---|
6273 | double precision_a, precision_b, precision_c, precision_d; |
---|
6274 | float rel_param_err = 0.025; |
---|
6275 | precision_a = rel_param_err * realPrecision / block_size; |
---|
6276 | precision_b = rel_param_err * realPrecision / block_size; |
---|
6277 | precision_c = rel_param_err * realPrecision / block_size; |
---|
6278 | precision_d = rel_param_err * realPrecision; |
---|
6279 | |
---|
6280 | if(exe_params->optQuantMode==1) |
---|
6281 | { |
---|
6282 | quantization_intervals = optimize_intervals_float_3D_with_freq_and_dense_pos(oriData, r1, r2, r3, realPrecision, &dense_pos, &sz_sample_correct_freq, &mean_flush_freq); |
---|
6283 | if(mean_flush_freq > 0.5 || mean_flush_freq > sz_sample_correct_freq) use_mean = 1; |
---|
6284 | updateQuantizationInfo(quantization_intervals); |
---|
6285 | } |
---|
6286 | else{ |
---|
6287 | quantization_intervals = exe_params->intvCapacity; |
---|
6288 | } |
---|
6289 | |
---|
6290 | float mean = 0; |
---|
6291 | if(use_mean){ |
---|
6292 | // compute mean |
---|
6293 | double sum = 0.0; |
---|
6294 | size_t mean_count = 0; |
---|
6295 | for(size_t i=0; i<num_elements; i++){ |
---|
6296 | if(fabs(oriData[i] - dense_pos) < realPrecision){ |
---|
6297 | sum += oriData[i]; |
---|
6298 | mean_count ++; |
---|
6299 | } |
---|
6300 | } |
---|
6301 | if(mean_count > 0) mean = sum / mean_count; |
---|
6302 | } |
---|
6303 | |
---|
6304 | double tmp_realPrecision = realPrecision; |
---|
6305 | |
---|
6306 | // use two prediction buffers for higher performance |
---|
6307 | float * unpredictable_data = result_unpredictable_data; |
---|
6308 | unsigned char * indicator = (unsigned char *) malloc(num_blocks * sizeof(unsigned char)); |
---|
6309 | memset(indicator, 0, num_blocks * sizeof(unsigned char)); |
---|
6310 | size_t reg_count = 0; |
---|
6311 | unsigned char * indicator_pos = indicator; |
---|
6312 | |
---|
6313 | int intvCapacity = exe_params->intvCapacity; |
---|
6314 | int intvRadius = exe_params->intvRadius; |
---|
6315 | int use_reg = 0; |
---|
6316 | float noise = realPrecision * 1.22; |
---|
6317 | |
---|
6318 | reg_params_pos = reg_params; |
---|
6319 | // compress the regression coefficients on the fly |
---|
6320 | float last_coeffcients[4] = {0.0}; |
---|
6321 | int coeff_intvCapacity_sz = 65536; |
---|
6322 | int coeff_intvRadius = coeff_intvCapacity_sz / 2; |
---|
6323 | int * coeff_type[4]; |
---|
6324 | int * coeff_result_type = (int *) malloc(num_blocks*4*sizeof(int)); |
---|
6325 | float * coeff_unpred_data[4]; |
---|
6326 | float * coeff_unpredictable_data = (float *) malloc(num_blocks*4*sizeof(float)); |
---|
6327 | double precision[4]; |
---|
6328 | precision[0] = precision_a, precision[1] = precision_b, precision[2] = precision_c, precision[3] = precision_d; |
---|
6329 | for(int i=0; i<4; i++){ |
---|
6330 | coeff_type[i] = coeff_result_type + i * num_blocks; |
---|
6331 | coeff_unpred_data[i] = coeff_unpredictable_data + i * num_blocks; |
---|
6332 | } |
---|
6333 | int coeff_index = 0; |
---|
6334 | unsigned int coeff_unpredictable_count[4] = {0}; |
---|
6335 | |
---|
6336 | memset(pred_buffer, 0, (block_size+1)*(block_size+1)*(block_size+1)*sizeof(float)); |
---|
6337 | int pred_buffer_block_size = block_size + 1; |
---|
6338 | int strip_dim0_offset = pred_buffer_block_size * pred_buffer_block_size; |
---|
6339 | int strip_dim1_offset = pred_buffer_block_size; |
---|
6340 | |
---|
6341 | if(use_mean){ |
---|
6342 | int intvCapacity_sz = intvCapacity - 2; |
---|
6343 | type = result_type; |
---|
6344 | for(size_t i=0; i<num_x; i++){ |
---|
6345 | for(size_t j=0; j<num_y; j++){ |
---|
6346 | for(size_t k=0; k<num_z; k++){ |
---|
6347 | data_pos = oriData + i*block_size * dim0_offset + j*block_size * dim1_offset + k*block_size; |
---|
6348 | // add 1 in x, y, z offset |
---|
6349 | pred_buffer_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
6350 | block_data_pos_x = data_pos; |
---|
6351 | for(int ii=0; ii<block_size; ii++){ |
---|
6352 | block_data_pos_y = block_data_pos_x; |
---|
6353 | for(int jj=0; jj<block_size; jj++){ |
---|
6354 | block_data_pos_z = block_data_pos_y; |
---|
6355 | for(int kk=0; kk<block_size; kk++){ |
---|
6356 | *pred_buffer_pos = *block_data_pos_z; |
---|
6357 | if(k*block_size + kk + 1< r3) block_data_pos_z ++; |
---|
6358 | pred_buffer_pos ++; |
---|
6359 | } |
---|
6360 | // add 1 in z offset |
---|
6361 | pred_buffer_pos ++; |
---|
6362 | if(j*block_size + jj + 1< r2) block_data_pos_y += dim1_offset; |
---|
6363 | } |
---|
6364 | // add 1 in y offset |
---|
6365 | pred_buffer_pos += pred_buffer_block_size; |
---|
6366 | if(i*block_size + ii + 1< r1) block_data_pos_x += dim0_offset; |
---|
6367 | } |
---|
6368 | /*sampling and decide which predictor*/ |
---|
6369 | { |
---|
6370 | // sample point [1, 1, 1] [1, 1, 4] [1, 4, 1] [1, 4, 4] [4, 1, 1] [4, 1, 4] [4, 4, 1] [4, 4, 4] |
---|
6371 | float * cur_data_pos; |
---|
6372 | float curData; |
---|
6373 | float pred_reg, pred_sz; |
---|
6374 | float err_sz = 0.0, err_reg = 0.0; |
---|
6375 | int bmi = 0; |
---|
6376 | for(int i=2; i<=block_size; i++){ |
---|
6377 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + i*pred_buffer_block_size + i; |
---|
6378 | curData = *cur_data_pos; |
---|
6379 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6380 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
6381 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
6382 | err_reg += fabs(pred_reg - curData); |
---|
6383 | |
---|
6384 | bmi = block_size - i; |
---|
6385 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + i*pred_buffer_block_size + bmi; |
---|
6386 | curData = *cur_data_pos; |
---|
6387 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6388 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
6389 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
6390 | err_reg += fabs(pred_reg - curData); |
---|
6391 | |
---|
6392 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + bmi*pred_buffer_block_size + i; |
---|
6393 | curData = *cur_data_pos; |
---|
6394 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6395 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
6396 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
6397 | err_reg += fabs(pred_reg - curData); |
---|
6398 | |
---|
6399 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + bmi*pred_buffer_block_size + bmi; |
---|
6400 | curData = *cur_data_pos; |
---|
6401 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6402 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
6403 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
6404 | err_reg += fabs(pred_reg - curData); |
---|
6405 | } |
---|
6406 | |
---|
6407 | use_reg = (err_reg < err_sz); |
---|
6408 | } |
---|
6409 | if(use_reg){ |
---|
6410 | { |
---|
6411 | /*predict coefficients in current block via previous reg_block*/ |
---|
6412 | float cur_coeff; |
---|
6413 | double diff, itvNum; |
---|
6414 | for(int e=0; e<4; e++){ |
---|
6415 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
6416 | diff = cur_coeff - last_coeffcients[e]; |
---|
6417 | itvNum = fabs(diff)/precision[e] + 1; |
---|
6418 | if (itvNum < coeff_intvCapacity_sz){ |
---|
6419 | if (diff < 0) itvNum = -itvNum; |
---|
6420 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
6421 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
6422 | //ganrantee comporession error against the case of machine-epsilon |
---|
6423 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
6424 | coeff_type[e][coeff_index] = 0; |
---|
6425 | last_coeffcients[e] = cur_coeff; |
---|
6426 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
6427 | } |
---|
6428 | } |
---|
6429 | else{ |
---|
6430 | coeff_type[e][coeff_index] = 0; |
---|
6431 | last_coeffcients[e] = cur_coeff; |
---|
6432 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
6433 | } |
---|
6434 | } |
---|
6435 | coeff_index ++; |
---|
6436 | } |
---|
6437 | float curData; |
---|
6438 | float pred; |
---|
6439 | double itvNum; |
---|
6440 | double diff; |
---|
6441 | size_t index = 0; |
---|
6442 | size_t block_unpredictable_count = 0; |
---|
6443 | float * cur_data_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
6444 | for(size_t ii=0; ii<block_size; ii++){ |
---|
6445 | for(size_t jj=0; jj<block_size; jj++){ |
---|
6446 | for(size_t kk=0; kk<block_size; kk++){ |
---|
6447 | curData = *cur_data_pos; |
---|
6448 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
6449 | diff = curData - pred; |
---|
6450 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
6451 | if (itvNum < intvCapacity){ |
---|
6452 | if (diff < 0) itvNum = -itvNum; |
---|
6453 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
6454 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
6455 | //ganrantee comporession error against the case of machine-epsilon |
---|
6456 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
6457 | type[index] = 0; |
---|
6458 | pred = curData; |
---|
6459 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
6460 | } |
---|
6461 | } |
---|
6462 | else{ |
---|
6463 | type[index] = 0; |
---|
6464 | pred = curData; |
---|
6465 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
6466 | } |
---|
6467 | index ++; |
---|
6468 | cur_data_pos ++; |
---|
6469 | } |
---|
6470 | cur_data_pos ++; |
---|
6471 | } |
---|
6472 | cur_data_pos += pred_buffer_block_size; |
---|
6473 | } |
---|
6474 | |
---|
6475 | total_unpred += block_unpredictable_count; |
---|
6476 | unpredictable_data += block_unpredictable_count; |
---|
6477 | reg_count ++; |
---|
6478 | } |
---|
6479 | else{ |
---|
6480 | // use SZ |
---|
6481 | // SZ predication |
---|
6482 | unpredictable_count = 0; |
---|
6483 | float * cur_data_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
6484 | float curData; |
---|
6485 | float pred3D; |
---|
6486 | double itvNum, diff; |
---|
6487 | size_t index = 0; |
---|
6488 | for(size_t ii=0; ii<block_size; ii++){ |
---|
6489 | for(size_t jj=0; jj<block_size; jj++){ |
---|
6490 | for(size_t kk=0; kk<block_size; kk++){ |
---|
6491 | |
---|
6492 | curData = *cur_data_pos; |
---|
6493 | if(fabs(curData - mean) <= realPrecision){ |
---|
6494 | type[index] = 1; |
---|
6495 | *cur_data_pos = mean; |
---|
6496 | } |
---|
6497 | else |
---|
6498 | { |
---|
6499 | pred3D = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] |
---|
6500 | - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6501 | diff = curData - pred3D; |
---|
6502 | itvNum = fabs(diff)/realPrecision + 1; |
---|
6503 | if (itvNum < intvCapacity_sz){ |
---|
6504 | if (diff < 0) itvNum = -itvNum; |
---|
6505 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
6506 | *cur_data_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
6507 | //ganrantee comporession error against the case of machine-epsilon |
---|
6508 | if(fabs(curData - *cur_data_pos)>tmp_realPrecision){ |
---|
6509 | type[index] = 0; |
---|
6510 | *cur_data_pos = curData; |
---|
6511 | unpredictable_data[unpredictable_count ++] = curData; |
---|
6512 | } |
---|
6513 | } |
---|
6514 | else{ |
---|
6515 | type[index] = 0; |
---|
6516 | *cur_data_pos = curData; |
---|
6517 | unpredictable_data[unpredictable_count ++] = curData; |
---|
6518 | } |
---|
6519 | } |
---|
6520 | index ++; |
---|
6521 | cur_data_pos ++; |
---|
6522 | } |
---|
6523 | cur_data_pos ++; |
---|
6524 | } |
---|
6525 | cur_data_pos += pred_buffer_block_size; |
---|
6526 | } |
---|
6527 | total_unpred += unpredictable_count; |
---|
6528 | unpredictable_data += unpredictable_count; |
---|
6529 | // change indicator |
---|
6530 | indicator_pos[k] = 1; |
---|
6531 | }// end SZ |
---|
6532 | reg_params_pos ++; |
---|
6533 | type += block_size * block_size * block_size; |
---|
6534 | } // end k |
---|
6535 | indicator_pos += num_z; |
---|
6536 | }// end j |
---|
6537 | }// end i |
---|
6538 | } |
---|
6539 | else{ |
---|
6540 | int intvCapacity_sz = intvCapacity - 2; |
---|
6541 | type = result_type; |
---|
6542 | for(size_t i=0; i<num_x; i++){ |
---|
6543 | for(size_t j=0; j<num_y; j++){ |
---|
6544 | for(size_t k=0; k<num_z; k++){ |
---|
6545 | data_pos = oriData + i*block_size * dim0_offset + j*block_size * dim1_offset + k*block_size; |
---|
6546 | // add 1 in x, y, z offset |
---|
6547 | pred_buffer_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
6548 | block_data_pos_x = data_pos; |
---|
6549 | for(int ii=0; ii<block_size; ii++){ |
---|
6550 | block_data_pos_y = block_data_pos_x; |
---|
6551 | for(int jj=0; jj<block_size; jj++){ |
---|
6552 | block_data_pos_z = block_data_pos_y; |
---|
6553 | for(int kk=0; kk<block_size; kk++){ |
---|
6554 | *pred_buffer_pos = *block_data_pos_z; |
---|
6555 | if(k*block_size + kk < r3) block_data_pos_z ++; |
---|
6556 | pred_buffer_pos ++; |
---|
6557 | } |
---|
6558 | // add 1 in z offset |
---|
6559 | pred_buffer_pos ++; |
---|
6560 | if(j*block_size + jj < r2) block_data_pos_y += dim1_offset; |
---|
6561 | } |
---|
6562 | // add 1 in y offset |
---|
6563 | pred_buffer_pos += pred_buffer_block_size; |
---|
6564 | if(i*block_size + ii < r1) block_data_pos_x += dim0_offset; |
---|
6565 | } |
---|
6566 | /*sampling*/ |
---|
6567 | { |
---|
6568 | // sample point [1, 1, 1] [1, 1, 4] [1, 4, 1] [1, 4, 4] [4, 1, 1] [4, 1, 4] [4, 4, 1] [4, 4, 4] |
---|
6569 | float * cur_data_pos; |
---|
6570 | float curData; |
---|
6571 | float pred_reg, pred_sz; |
---|
6572 | float err_sz = 0.0, err_reg = 0.0; |
---|
6573 | int bmi; |
---|
6574 | for(int i=2; i<=block_size; i++){ |
---|
6575 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + i*pred_buffer_block_size + i; |
---|
6576 | curData = *cur_data_pos; |
---|
6577 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6578 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
6579 | err_sz += fabs(pred_sz - curData) + noise; |
---|
6580 | err_reg += fabs(pred_reg - curData); |
---|
6581 | |
---|
6582 | bmi = block_size - i; |
---|
6583 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + i*pred_buffer_block_size + bmi; |
---|
6584 | curData = *cur_data_pos; |
---|
6585 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6586 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
6587 | err_sz += fabs(pred_sz - curData) + noise; |
---|
6588 | err_reg += fabs(pred_reg - curData); |
---|
6589 | |
---|
6590 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + bmi*pred_buffer_block_size + i; |
---|
6591 | curData = *cur_data_pos; |
---|
6592 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6593 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
6594 | err_sz += fabs(pred_sz - curData) + noise; |
---|
6595 | err_reg += fabs(pred_reg - curData); |
---|
6596 | |
---|
6597 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + bmi*pred_buffer_block_size + bmi; |
---|
6598 | curData = *cur_data_pos; |
---|
6599 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6600 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
6601 | err_sz += fabs(pred_sz - curData) + noise; |
---|
6602 | err_reg += fabs(pred_reg - curData); |
---|
6603 | } |
---|
6604 | |
---|
6605 | use_reg = (err_reg < err_sz); |
---|
6606 | |
---|
6607 | } |
---|
6608 | if(use_reg) |
---|
6609 | { |
---|
6610 | { |
---|
6611 | /*predict coefficients in current block via previous reg_block*/ |
---|
6612 | float cur_coeff; |
---|
6613 | double diff, itvNum; |
---|
6614 | for(int e=0; e<4; e++){ |
---|
6615 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
6616 | diff = cur_coeff - last_coeffcients[e]; |
---|
6617 | itvNum = fabs(diff)/precision[e] + 1; |
---|
6618 | if (itvNum < coeff_intvCapacity_sz){ |
---|
6619 | if (diff < 0) itvNum = -itvNum; |
---|
6620 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
6621 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
6622 | //ganrantee comporession error against the case of machine-epsilon |
---|
6623 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
6624 | coeff_type[e][coeff_index] = 0; |
---|
6625 | last_coeffcients[e] = cur_coeff; |
---|
6626 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
6627 | } |
---|
6628 | } |
---|
6629 | else{ |
---|
6630 | coeff_type[e][coeff_index] = 0; |
---|
6631 | last_coeffcients[e] = cur_coeff; |
---|
6632 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
6633 | } |
---|
6634 | } |
---|
6635 | coeff_index ++; |
---|
6636 | } |
---|
6637 | float curData; |
---|
6638 | float pred; |
---|
6639 | double itvNum; |
---|
6640 | double diff; |
---|
6641 | size_t index = 0; |
---|
6642 | size_t block_unpredictable_count = 0; |
---|
6643 | float * cur_data_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
6644 | for(size_t ii=0; ii<block_size; ii++){ |
---|
6645 | for(size_t jj=0; jj<block_size; jj++){ |
---|
6646 | for(size_t kk=0; kk<block_size; kk++){ |
---|
6647 | curData = *cur_data_pos; |
---|
6648 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
6649 | diff = curData - pred; |
---|
6650 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
6651 | if (itvNum < intvCapacity){ |
---|
6652 | if (diff < 0) itvNum = -itvNum; |
---|
6653 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
6654 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
6655 | //ganrantee comporession error against the case of machine-epsilon |
---|
6656 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
6657 | type[index] = 0; |
---|
6658 | pred = curData; |
---|
6659 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
6660 | } |
---|
6661 | } |
---|
6662 | else{ |
---|
6663 | type[index] = 0; |
---|
6664 | pred = curData; |
---|
6665 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
6666 | } |
---|
6667 | index ++; |
---|
6668 | cur_data_pos ++; |
---|
6669 | } |
---|
6670 | cur_data_pos ++; |
---|
6671 | } |
---|
6672 | cur_data_pos += pred_buffer_block_size; |
---|
6673 | } |
---|
6674 | total_unpred += block_unpredictable_count; |
---|
6675 | unpredictable_data += block_unpredictable_count; |
---|
6676 | reg_count ++; |
---|
6677 | } |
---|
6678 | else{ |
---|
6679 | // use SZ |
---|
6680 | // SZ predication |
---|
6681 | unpredictable_count = 0; |
---|
6682 | float * cur_data_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
6683 | float curData; |
---|
6684 | float pred3D; |
---|
6685 | double itvNum, diff; |
---|
6686 | size_t index = 0; |
---|
6687 | for(size_t ii=0; ii<block_size; ii++){ |
---|
6688 | for(size_t jj=0; jj<block_size; jj++){ |
---|
6689 | for(size_t kk=0; kk<block_size; kk++){ |
---|
6690 | curData = *cur_data_pos; |
---|
6691 | pred3D = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] |
---|
6692 | - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
6693 | diff = curData - pred3D; |
---|
6694 | itvNum = fabs(diff)/realPrecision + 1; |
---|
6695 | if (itvNum < intvCapacity_sz){ |
---|
6696 | if (diff < 0) itvNum = -itvNum; |
---|
6697 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
6698 | *cur_data_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
6699 | //ganrantee comporession error against the case of machine-epsilon |
---|
6700 | if(fabs(curData - *cur_data_pos)>tmp_realPrecision){ |
---|
6701 | type[index] = 0; |
---|
6702 | *cur_data_pos = curData; |
---|
6703 | unpredictable_data[unpredictable_count ++] = curData; |
---|
6704 | } |
---|
6705 | } |
---|
6706 | else{ |
---|
6707 | type[index] = 0; |
---|
6708 | *cur_data_pos = curData; |
---|
6709 | unpredictable_data[unpredictable_count ++] = curData; |
---|
6710 | } |
---|
6711 | index ++; |
---|
6712 | cur_data_pos ++; |
---|
6713 | } |
---|
6714 | cur_data_pos ++; |
---|
6715 | } |
---|
6716 | cur_data_pos += pred_buffer_block_size; |
---|
6717 | } |
---|
6718 | total_unpred += unpredictable_count; |
---|
6719 | unpredictable_data += unpredictable_count; |
---|
6720 | // change indicator |
---|
6721 | indicator_pos[k] = 1; |
---|
6722 | }// end SZ |
---|
6723 | reg_params_pos ++; |
---|
6724 | type += block_size * block_size * block_size; |
---|
6725 | } |
---|
6726 | indicator_pos += num_z; |
---|
6727 | } |
---|
6728 | } |
---|
6729 | } |
---|
6730 | free(pred_buffer); |
---|
6731 | int stateNum = 2*quantization_intervals; |
---|
6732 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
6733 | |
---|
6734 | size_t nodeCount = 0; |
---|
6735 | init(huffmanTree, result_type, num_blocks*max_num_block_elements); |
---|
6736 | size_t i = 0; |
---|
6737 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
6738 | if (huffmanTree->code[i]) nodeCount++; |
---|
6739 | nodeCount = nodeCount*2-1; |
---|
6740 | |
---|
6741 | unsigned char *treeBytes; |
---|
6742 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
6743 | |
---|
6744 | unsigned int meta_data_offset = 3 + 1 + MetaDataByteLength; |
---|
6745 | // total size metadata # elements real precision intervals nodeCount huffman block index unpredicatable count mean unpred size elements |
---|
6746 | unsigned char * result = (unsigned char *) calloc(meta_data_offset + exe_params->SZ_SIZE_TYPE + sizeof(double) + sizeof(int) + sizeof(int) + treeByteSize + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(float) + total_unpred * sizeof(float) + num_elements * sizeof(int), 1); |
---|
6747 | unsigned char * result_pos = result; |
---|
6748 | initRandomAccessBytes(result_pos); |
---|
6749 | |
---|
6750 | result_pos += meta_data_offset; |
---|
6751 | |
---|
6752 | sizeToBytes(result_pos,num_elements); //SZ_SIZE_TYPE: 4 or 8 |
---|
6753 | result_pos += exe_params->SZ_SIZE_TYPE; |
---|
6754 | |
---|
6755 | intToBytes_bigEndian(result_pos, block_size); |
---|
6756 | result_pos += sizeof(int); |
---|
6757 | doubleToBytes(result_pos, realPrecision); |
---|
6758 | result_pos += sizeof(double); |
---|
6759 | intToBytes_bigEndian(result_pos, quantization_intervals); |
---|
6760 | result_pos += sizeof(int); |
---|
6761 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
6762 | result_pos += sizeof(int); |
---|
6763 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
6764 | result_pos += sizeof(int); |
---|
6765 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
6766 | result_pos += treeByteSize; |
---|
6767 | free(treeBytes); |
---|
6768 | |
---|
6769 | memcpy(result_pos, &use_mean, sizeof(unsigned char)); |
---|
6770 | result_pos += sizeof(unsigned char); |
---|
6771 | memcpy(result_pos, &mean, sizeof(float)); |
---|
6772 | result_pos += sizeof(float); |
---|
6773 | size_t indicator_size = convertIntArray2ByteArray_fast_1b_to_result(indicator, num_blocks, result_pos); |
---|
6774 | result_pos += indicator_size; |
---|
6775 | |
---|
6776 | //convert the lead/mid/resi to byte stream |
---|
6777 | if(reg_count > 0){ |
---|
6778 | for(int e=0; e<4; e++){ |
---|
6779 | int stateNum = 2*coeff_intvCapacity_sz; |
---|
6780 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
6781 | size_t nodeCount = 0; |
---|
6782 | init(huffmanTree, coeff_type[e], reg_count); |
---|
6783 | size_t i = 0; |
---|
6784 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
6785 | if (huffmanTree->code[i]) nodeCount++; |
---|
6786 | nodeCount = nodeCount*2-1; |
---|
6787 | unsigned char *treeBytes; |
---|
6788 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
6789 | doubleToBytes(result_pos, precision[e]); |
---|
6790 | result_pos += sizeof(double); |
---|
6791 | intToBytes_bigEndian(result_pos, coeff_intvRadius); |
---|
6792 | result_pos += sizeof(int); |
---|
6793 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
6794 | result_pos += sizeof(int); |
---|
6795 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
6796 | result_pos += sizeof(int); |
---|
6797 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
6798 | result_pos += treeByteSize; |
---|
6799 | free(treeBytes); |
---|
6800 | size_t typeArray_size = 0; |
---|
6801 | encode(huffmanTree, coeff_type[e], reg_count, result_pos + sizeof(size_t), &typeArray_size); |
---|
6802 | sizeToBytes(result_pos, typeArray_size); |
---|
6803 | result_pos += sizeof(size_t) + typeArray_size; |
---|
6804 | intToBytes_bigEndian(result_pos, coeff_unpredictable_count[e]); |
---|
6805 | result_pos += sizeof(int); |
---|
6806 | memcpy(result_pos, coeff_unpred_data[e], coeff_unpredictable_count[e]*sizeof(float)); |
---|
6807 | result_pos += coeff_unpredictable_count[e]*sizeof(float); |
---|
6808 | SZ_ReleaseHuffman(huffmanTree); |
---|
6809 | } |
---|
6810 | } |
---|
6811 | free(coeff_result_type); |
---|
6812 | free(coeff_unpredictable_data); |
---|
6813 | |
---|
6814 | //record the number of unpredictable data and also store them |
---|
6815 | memcpy(result_pos, &total_unpred, sizeof(size_t)); |
---|
6816 | result_pos += sizeof(size_t); |
---|
6817 | memcpy(result_pos, result_unpredictable_data, total_unpred * sizeof(float)); |
---|
6818 | result_pos += total_unpred * sizeof(float); |
---|
6819 | size_t typeArray_size = 0; |
---|
6820 | encode(huffmanTree, result_type, num_blocks*max_num_block_elements, result_pos, &typeArray_size); |
---|
6821 | result_pos += typeArray_size; |
---|
6822 | size_t totalEncodeSize = result_pos - result; |
---|
6823 | free(indicator); |
---|
6824 | free(result_unpredictable_data); |
---|
6825 | free(result_type); |
---|
6826 | free(reg_params); |
---|
6827 | |
---|
6828 | |
---|
6829 | SZ_ReleaseHuffman(huffmanTree); |
---|
6830 | *comp_size = totalEncodeSize; |
---|
6831 | return result; |
---|
6832 | } |
---|