[2c47b73] | 1 | /** |
---|
| 2 | * @file sz_float.c |
---|
[9ee2ce3] | 3 | * @author Sheng Di, Dingwen Tao, Xin Liang |
---|
[2c47b73] | 4 | * @date Aug, 2016 |
---|
| 5 | * @brief SZ_Init, Compression and Decompression functions |
---|
| 6 | * (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory. |
---|
| 7 | * See COPYRIGHT in top-level directory. |
---|
| 8 | */ |
---|
| 9 | |
---|
| 10 | |
---|
| 11 | #include <stdio.h> |
---|
| 12 | #include <stdlib.h> |
---|
[e6aa0eb] | 13 | #include <stddef.h> |
---|
[2c47b73] | 14 | #include <string.h> |
---|
| 15 | #include <unistd.h> |
---|
| 16 | #include <math.h> |
---|
| 17 | #include "sz.h" |
---|
| 18 | #include "CompressElement.h" |
---|
| 19 | #include "DynamicByteArray.h" |
---|
| 20 | #include "DynamicIntArray.h" |
---|
| 21 | #include "TightDataPointStorageF.h" |
---|
| 22 | #include "sz_float.h" |
---|
| 23 | #include "sz_float_pwr.h" |
---|
| 24 | #include "szd_float.h" |
---|
| 25 | #include "szd_float_pwr.h" |
---|
| 26 | #include "zlib.h" |
---|
| 27 | #include "rw.h" |
---|
| 28 | #include "sz_float_ts.h" |
---|
[9ee2ce3] | 29 | #include "utility.h" |
---|
[2c47b73] | 30 | |
---|
| 31 | unsigned char* SZ_skip_compress_float(float* data, size_t dataLength, size_t* outSize) |
---|
| 32 | { |
---|
| 33 | *outSize = dataLength*sizeof(float); |
---|
| 34 | unsigned char* out = (unsigned char*)malloc(dataLength*sizeof(float)); |
---|
| 35 | memcpy(out, data, dataLength*sizeof(float)); |
---|
| 36 | return out; |
---|
| 37 | } |
---|
| 38 | unsigned int optimize_intervals_float_1D(float *oriData, size_t dataLength, double realPrecision) |
---|
| 39 | { |
---|
| 40 | size_t i = 0, radiusIndex; |
---|
| 41 | float pred_value = 0, pred_err; |
---|
| 42 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 43 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 44 | size_t totalSampleSize = dataLength/confparams_cpr->sampleDistance; |
---|
| 45 | for(i=2;i<dataLength;i++) |
---|
| 46 | { |
---|
| 47 | if(i%confparams_cpr->sampleDistance==0) |
---|
| 48 | { |
---|
| 49 | //pred_value = 2*oriData[i-1] - oriData[i-2]; |
---|
| 50 | pred_value = oriData[i-1]; |
---|
| 51 | pred_err = fabs(pred_value - oriData[i]); |
---|
| 52 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 53 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 54 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 55 | intervals[radiusIndex]++; |
---|
| 56 | } |
---|
| 57 | } |
---|
| 58 | //compute the appropriate number |
---|
| 59 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 60 | size_t sum = 0; |
---|
| 61 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 62 | { |
---|
| 63 | sum += intervals[i]; |
---|
| 64 | if(sum>targetCount) |
---|
| 65 | break; |
---|
| 66 | } |
---|
| 67 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 68 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 69 | |
---|
| 70 | unsigned int accIntervals = 2*(i+1); |
---|
| 71 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 72 | |
---|
| 73 | if(powerOf2<32) |
---|
| 74 | powerOf2 = 32; |
---|
| 75 | |
---|
| 76 | free(intervals); |
---|
| 77 | //printf("accIntervals=%d, powerOf2=%d\n", accIntervals, powerOf2); |
---|
| 78 | return powerOf2; |
---|
| 79 | } |
---|
| 80 | |
---|
| 81 | unsigned int optimize_intervals_float_2D(float *oriData, size_t r1, size_t r2, double realPrecision) |
---|
| 82 | { |
---|
| 83 | size_t i,j, index; |
---|
| 84 | size_t radiusIndex; |
---|
| 85 | float pred_value = 0, pred_err; |
---|
| 86 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 87 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 88 | size_t totalSampleSize = (r1-1)*(r2-1)/confparams_cpr->sampleDistance; |
---|
| 89 | |
---|
| 90 | //float max = oriData[0]; |
---|
| 91 | //float min = oriData[0]; |
---|
| 92 | |
---|
| 93 | for(i=1;i<r1;i++) |
---|
| 94 | { |
---|
| 95 | for(j=1;j<r2;j++) |
---|
| 96 | { |
---|
| 97 | if((i+j)%confparams_cpr->sampleDistance==0) |
---|
| 98 | { |
---|
| 99 | index = i*r2+j; |
---|
| 100 | pred_value = oriData[index-1] + oriData[index-r2] - oriData[index-r2-1]; |
---|
| 101 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 102 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 103 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 104 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 105 | intervals[radiusIndex]++; |
---|
| 106 | |
---|
| 107 | // if (max < oriData[index]) max = oriData[index]; |
---|
| 108 | // if (min > oriData[index]) min = oriData[index]; |
---|
| 109 | } |
---|
| 110 | } |
---|
| 111 | } |
---|
| 112 | //compute the appropriate number |
---|
| 113 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 114 | size_t sum = 0; |
---|
| 115 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 116 | { |
---|
| 117 | sum += intervals[i]; |
---|
| 118 | if(sum>targetCount) |
---|
| 119 | break; |
---|
| 120 | } |
---|
| 121 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 122 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 123 | unsigned int accIntervals = 2*(i+1); |
---|
| 124 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 125 | |
---|
| 126 | if(powerOf2<32) |
---|
| 127 | powerOf2 = 32; |
---|
| 128 | |
---|
| 129 | // struct timeval costStart, costEnd; |
---|
| 130 | // double cost_est = 0; |
---|
| 131 | // |
---|
| 132 | // gettimeofday(&costStart, NULL); |
---|
| 133 | // |
---|
| 134 | // //compute estimate of bit-rate and distortion |
---|
| 135 | // double est_br = 0; |
---|
| 136 | // double est_psnr = 0; |
---|
| 137 | // double c1 = log2(targetCount)+1; |
---|
| 138 | // double c2 = -20.0*log10(realPrecision) + 20.0*log10(max-min) + 10.0*log10(3); |
---|
| 139 | // |
---|
| 140 | // for (i = 0; i < powerOf2/2; i++) |
---|
| 141 | // { |
---|
| 142 | // int count = intervals[i]; |
---|
| 143 | // if (count != 0) |
---|
| 144 | // est_br += count*log2(count); |
---|
| 145 | // est_psnr += count; |
---|
| 146 | // } |
---|
| 147 | // |
---|
| 148 | // //compute estimate of bit-rate |
---|
| 149 | // est_br -= c1*est_psnr; |
---|
| 150 | // est_br /= totalSampleSize; |
---|
| 151 | // est_br = -est_br; |
---|
| 152 | // |
---|
| 153 | // //compute estimate of psnr |
---|
| 154 | // est_psnr /= totalSampleSize; |
---|
| 155 | // printf ("sum of P(i) = %lf\n", est_psnr); |
---|
| 156 | // est_psnr = -10.0*log10(est_psnr); |
---|
| 157 | // est_psnr += c2; |
---|
| 158 | // |
---|
| 159 | // printf ("estimate bitrate = %.2f\n", est_br); |
---|
| 160 | // printf ("estimate psnr = %.2f\n",est_psnr); |
---|
| 161 | // |
---|
| 162 | // gettimeofday(&costEnd, NULL); |
---|
| 163 | // cost_est = ((costEnd.tv_sec*1000000+costEnd.tv_usec)-(costStart.tv_sec*1000000+costStart.tv_usec))/1000000.0; |
---|
| 164 | // |
---|
| 165 | // printf ("analysis time = %f\n", cost_est); |
---|
| 166 | |
---|
| 167 | free(intervals); |
---|
| 168 | //printf("confparams_cpr->maxRangeRadius = %d, accIntervals=%d, powerOf2=%d\n", confparams_cpr->maxRangeRadius, accIntervals, powerOf2); |
---|
| 169 | return powerOf2; |
---|
| 170 | } |
---|
| 171 | |
---|
| 172 | unsigned int optimize_intervals_float_3D(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision) |
---|
| 173 | { |
---|
| 174 | size_t i,j,k, index; |
---|
| 175 | size_t radiusIndex; |
---|
| 176 | size_t r23=r2*r3; |
---|
| 177 | float pred_value = 0, pred_err; |
---|
| 178 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 179 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 180 | size_t totalSampleSize = (r1-1)*(r2-1)*(r3-1)/confparams_cpr->sampleDistance; |
---|
| 181 | |
---|
| 182 | //float max = oriData[0]; |
---|
| 183 | //float min = oriData[0]; |
---|
| 184 | |
---|
| 185 | for(i=1;i<r1;i++) |
---|
| 186 | { |
---|
| 187 | for(j=1;j<r2;j++) |
---|
| 188 | { |
---|
| 189 | for(k=1;k<r3;k++) |
---|
| 190 | { |
---|
| 191 | if((i+j+k)%confparams_cpr->sampleDistance==0) |
---|
| 192 | { |
---|
| 193 | index = i*r23+j*r3+k; |
---|
| 194 | pred_value = oriData[index-1] + oriData[index-r3] + oriData[index-r23] |
---|
| 195 | - oriData[index-1-r23] - oriData[index-r3-1] - oriData[index-r3-r23] + oriData[index-r3-r23-1]; |
---|
| 196 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 197 | radiusIndex = (pred_err/realPrecision+1)/2; |
---|
| 198 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 199 | { |
---|
| 200 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 201 | //printf("radiusIndex=%d\n", radiusIndex); |
---|
| 202 | } |
---|
| 203 | intervals[radiusIndex]++; |
---|
| 204 | |
---|
| 205 | // if (max < oriData[index]) max = oriData[index]; |
---|
| 206 | // if (min > oriData[index]) min = oriData[index]; |
---|
| 207 | } |
---|
| 208 | } |
---|
| 209 | } |
---|
| 210 | } |
---|
| 211 | //compute the appropriate number |
---|
| 212 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 213 | size_t sum = 0; |
---|
| 214 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 215 | { |
---|
| 216 | sum += intervals[i]; |
---|
| 217 | if(sum>targetCount) |
---|
| 218 | break; |
---|
| 219 | } |
---|
| 220 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 221 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 222 | unsigned int accIntervals = 2*(i+1); |
---|
| 223 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 224 | |
---|
| 225 | if(powerOf2<32) |
---|
| 226 | powerOf2 = 32; |
---|
| 227 | |
---|
| 228 | // struct timeval costStart, costEnd; |
---|
| 229 | // double cost_est = 0; |
---|
| 230 | // |
---|
| 231 | // gettimeofday(&costStart, NULL); |
---|
| 232 | // |
---|
| 233 | // //compute estimate of bit-rate and distortion |
---|
| 234 | // double est_br = 0; |
---|
| 235 | // double est_psnr = 0; |
---|
| 236 | // double c1 = log2(targetCount)+1; |
---|
| 237 | // double c2 = -20.0*log10(realPrecision) + 20.0*log10(max-min) + 10.0*log10(3); |
---|
| 238 | // |
---|
| 239 | // for (i = 0; i < powerOf2/2; i++) |
---|
| 240 | // { |
---|
| 241 | // int count = intervals[i]; |
---|
| 242 | // if (count != 0) |
---|
| 243 | // est_br += count*log2(count); |
---|
| 244 | // est_psnr += count; |
---|
| 245 | // } |
---|
| 246 | // |
---|
| 247 | // //compute estimate of bit-rate |
---|
| 248 | // est_br -= c1*est_psnr; |
---|
| 249 | // est_br /= totalSampleSize; |
---|
| 250 | // est_br = -est_br; |
---|
| 251 | // |
---|
| 252 | // //compute estimate of psnr |
---|
| 253 | // est_psnr /= totalSampleSize; |
---|
| 254 | // printf ("sum of P(i) = %lf\n", est_psnr); |
---|
| 255 | // est_psnr = -10.0*log10(est_psnr); |
---|
| 256 | // est_psnr += c2; |
---|
| 257 | // |
---|
| 258 | // printf ("estimate bitrate = %.2f\n", est_br); |
---|
| 259 | // printf ("estimate psnr = %.2f\n",est_psnr); |
---|
| 260 | // |
---|
| 261 | // gettimeofday(&costEnd, NULL); |
---|
| 262 | // cost_est = ((costEnd.tv_sec*1000000+costEnd.tv_usec)-(costStart.tv_sec*1000000+costStart.tv_usec))/1000000.0; |
---|
| 263 | // |
---|
| 264 | // printf ("analysis time = %f\n", cost_est); |
---|
| 265 | |
---|
| 266 | free(intervals); |
---|
| 267 | //printf("targetCount=%d, sum=%d, totalSampleSize=%d, ratio=%f, accIntervals=%d, powerOf2=%d\n", targetCount, sum, totalSampleSize, (double)sum/(double)totalSampleSize, accIntervals, powerOf2); |
---|
| 268 | return powerOf2; |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | |
---|
| 272 | unsigned int optimize_intervals_float_4D(float *oriData, size_t r1, size_t r2, size_t r3, size_t r4, double realPrecision) |
---|
| 273 | { |
---|
| 274 | size_t i,j,k,l, index; |
---|
| 275 | size_t radiusIndex; |
---|
| 276 | size_t r234=r2*r3*r4; |
---|
| 277 | size_t r34=r3*r4; |
---|
| 278 | float pred_value = 0, pred_err; |
---|
| 279 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 280 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 281 | size_t totalSampleSize = (r1-1)*(r2-1)*(r3-1)*(r4-1)/confparams_cpr->sampleDistance; |
---|
| 282 | for(i=1;i<r1;i++) |
---|
| 283 | { |
---|
| 284 | for(j=1;j<r2;j++) |
---|
| 285 | { |
---|
| 286 | for(k=1;k<r3;k++) |
---|
| 287 | { |
---|
| 288 | for (l=1;l<r4;l++) |
---|
| 289 | { |
---|
| 290 | if((i+j+k+l)%confparams_cpr->sampleDistance==0) |
---|
| 291 | { |
---|
| 292 | index = i*r234+j*r34+k*r4+l; |
---|
| 293 | pred_value = oriData[index-1] + oriData[index-r3] + oriData[index-r34] |
---|
| 294 | - oriData[index-1-r34] - oriData[index-r4-1] - oriData[index-r4-r34] + oriData[index-r4-r34-1]; |
---|
| 295 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 296 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 297 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 298 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 299 | intervals[radiusIndex]++; |
---|
| 300 | } |
---|
| 301 | } |
---|
| 302 | } |
---|
| 303 | } |
---|
| 304 | } |
---|
| 305 | //compute the appropriate number |
---|
| 306 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 307 | size_t sum = 0; |
---|
| 308 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 309 | { |
---|
| 310 | sum += intervals[i]; |
---|
| 311 | if(sum>targetCount) |
---|
| 312 | break; |
---|
| 313 | } |
---|
| 314 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 315 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 316 | |
---|
| 317 | unsigned int accIntervals = 2*(i+1); |
---|
| 318 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 319 | |
---|
| 320 | if(powerOf2<32) |
---|
| 321 | powerOf2 = 32; |
---|
| 322 | |
---|
| 323 | free(intervals); |
---|
| 324 | return powerOf2; |
---|
| 325 | } |
---|
| 326 | |
---|
| 327 | TightDataPointStorageF* SZ_compress_float_1D_MDQ(float *oriData, |
---|
| 328 | size_t dataLength, double realPrecision, float valueRangeSize, float medianValue_f) |
---|
| 329 | { |
---|
| 330 | #ifdef HAVE_TIMECMPR |
---|
| 331 | float* decData = NULL; |
---|
| 332 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 333 | decData = (float*)(multisteps->hist_data); |
---|
| 334 | #endif |
---|
| 335 | |
---|
| 336 | unsigned int quantization_intervals; |
---|
| 337 | if(exe_params->optQuantMode==1) |
---|
| 338 | quantization_intervals = optimize_intervals_float_1D_opt(oriData, dataLength, realPrecision); |
---|
| 339 | else |
---|
| 340 | quantization_intervals = exe_params->intvCapacity; |
---|
| 341 | updateQuantizationInfo(quantization_intervals); |
---|
| 342 | |
---|
| 343 | size_t i; |
---|
| 344 | int reqLength; |
---|
| 345 | float medianValue = medianValue_f; |
---|
| 346 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
| 347 | |
---|
| 348 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 349 | |
---|
| 350 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 351 | |
---|
| 352 | float* spaceFillingValue = oriData; // |
---|
| 353 | |
---|
| 354 | DynamicIntArray *exactLeadNumArray; |
---|
| 355 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 356 | |
---|
| 357 | DynamicByteArray *exactMidByteArray; |
---|
| 358 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 359 | |
---|
| 360 | DynamicIntArray *resiBitArray; |
---|
| 361 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 362 | |
---|
| 363 | unsigned char preDataBytes[4]; |
---|
| 364 | intToBytes_bigEndian(preDataBytes, 0); |
---|
| 365 | |
---|
| 366 | int reqBytesLength = reqLength/8; |
---|
| 367 | int resiBitsLength = reqLength%8; |
---|
| 368 | float last3CmprsData[3] = {0}; |
---|
| 369 | |
---|
| 370 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
| 371 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 372 | |
---|
| 373 | //add the first data |
---|
| 374 | type[0] = 0; |
---|
| 375 | compressSingleFloatValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 376 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 377 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 378 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 379 | listAdd_float(last3CmprsData, vce->data); |
---|
| 380 | #ifdef HAVE_TIMECMPR |
---|
| 381 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 382 | decData[0] = vce->data; |
---|
| 383 | #endif |
---|
| 384 | |
---|
| 385 | //add the second data |
---|
| 386 | type[1] = 0; |
---|
| 387 | compressSingleFloatValue(vce, spaceFillingValue[1], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 388 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 389 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 390 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 391 | listAdd_float(last3CmprsData, vce->data); |
---|
| 392 | #ifdef HAVE_TIMECMPR |
---|
| 393 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 394 | decData[1] = vce->data; |
---|
| 395 | #endif |
---|
| 396 | int state; |
---|
| 397 | double checkRadius; |
---|
| 398 | float curData; |
---|
| 399 | float pred; |
---|
| 400 | float predAbsErr; |
---|
| 401 | checkRadius = (exe_params->intvCapacity-1)*realPrecision; |
---|
| 402 | double interval = 2*realPrecision; |
---|
| 403 | |
---|
| 404 | for(i=2;i<dataLength;i++) |
---|
| 405 | { |
---|
| 406 | curData = spaceFillingValue[i]; |
---|
| 407 | //pred = 2*last3CmprsData[0] - last3CmprsData[1]; |
---|
| 408 | pred = last3CmprsData[0]; |
---|
| 409 | predAbsErr = fabs(curData - pred); |
---|
[9ee2ce3] | 410 | if(predAbsErr<checkRadius) |
---|
[2c47b73] | 411 | { |
---|
| 412 | state = (predAbsErr/realPrecision+1)/2; |
---|
| 413 | if(curData>=pred) |
---|
| 414 | { |
---|
| 415 | type[i] = exe_params->intvRadius+state; |
---|
| 416 | pred = pred + state*interval; |
---|
| 417 | } |
---|
| 418 | else //curData<pred |
---|
| 419 | { |
---|
| 420 | type[i] = exe_params->intvRadius-state; |
---|
| 421 | pred = pred - state*interval; |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | //double-check the prediction error in case of machine-epsilon impact |
---|
| 425 | if(fabs(curData-pred)>realPrecision) |
---|
| 426 | { |
---|
| 427 | type[i] = 0; |
---|
| 428 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 429 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 430 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 431 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 432 | |
---|
| 433 | listAdd_float(last3CmprsData, vce->data); |
---|
| 434 | #ifdef HAVE_TIMECMPR |
---|
| 435 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 436 | decData[i] = vce->data; |
---|
| 437 | #endif |
---|
| 438 | } |
---|
| 439 | else |
---|
| 440 | { |
---|
| 441 | listAdd_float(last3CmprsData, pred); |
---|
| 442 | #ifdef HAVE_TIMECMPR |
---|
| 443 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 444 | decData[i] = pred; |
---|
| 445 | #endif |
---|
| 446 | } |
---|
| 447 | continue; |
---|
| 448 | } |
---|
| 449 | |
---|
| 450 | //unpredictable data processing |
---|
| 451 | type[i] = 0; |
---|
| 452 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 453 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 454 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 455 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 456 | |
---|
| 457 | listAdd_float(last3CmprsData, vce->data); |
---|
| 458 | #ifdef HAVE_TIMECMPR |
---|
| 459 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 460 | decData[i] = vce->data; |
---|
| 461 | #endif |
---|
| 462 | |
---|
| 463 | }//end of for |
---|
| 464 | |
---|
| 465 | // char* expSegmentsInBytes; |
---|
| 466 | // int expSegmentsInBytes_size = convertESCToBytes(esc, &expSegmentsInBytes); |
---|
| 467 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 468 | |
---|
| 469 | TightDataPointStorageF* tdps; |
---|
| 470 | |
---|
| 471 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
| 472 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 473 | exactLeadNumArray->array, |
---|
| 474 | resiBitArray->array, resiBitArray->size, |
---|
| 475 | resiBitsLength, |
---|
| 476 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 477 | |
---|
| 478 | //sdi:Debug |
---|
| 479 | /* int sum =0; |
---|
| 480 | for(i=0;i<dataLength;i++) |
---|
| 481 | if(type[i]==0) sum++; |
---|
| 482 | printf("opt_quantizations=%d, exactDataNum=%d, sum=%d\n",quantization_intervals, exactDataNum, sum);*/ |
---|
| 483 | |
---|
| 484 | //free memory |
---|
| 485 | free_DIA(exactLeadNumArray); |
---|
| 486 | free_DIA(resiBitArray); |
---|
| 487 | free(type); |
---|
| 488 | free(vce); |
---|
| 489 | free(lce); |
---|
| 490 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 491 | |
---|
| 492 | return tdps; |
---|
| 493 | } |
---|
| 494 | |
---|
| 495 | void SZ_compress_args_float_StoreOriData(float* oriData, size_t dataLength, TightDataPointStorageF* tdps, |
---|
| 496 | unsigned char** newByteData, size_t *outSize) |
---|
| 497 | { |
---|
| 498 | int floatSize=sizeof(float); |
---|
| 499 | size_t k = 0, i; |
---|
| 500 | tdps->isLossless = 1; |
---|
| 501 | size_t totalByteLength = 3 + MetaDataByteLength + exe_params->SZ_SIZE_TYPE + 1 + floatSize*dataLength; |
---|
| 502 | *newByteData = (unsigned char*)malloc(totalByteLength); |
---|
| 503 | |
---|
| 504 | unsigned char dsLengthBytes[8]; |
---|
| 505 | for (i = 0; i < 3; i++)//3 |
---|
| 506 | (*newByteData)[k++] = versionNumber[i]; |
---|
| 507 | |
---|
| 508 | if(exe_params->SZ_SIZE_TYPE==4)//1 |
---|
| 509 | (*newByteData)[k++] = 16; //00010000 |
---|
| 510 | else |
---|
| 511 | (*newByteData)[k++] = 80; //01010000: 01000000 indicates the SZ_SIZE_TYPE=8 |
---|
| 512 | |
---|
| 513 | convertSZParamsToBytes(confparams_cpr, &((*newByteData)[k])); |
---|
| 514 | k = k + MetaDataByteLength; |
---|
| 515 | |
---|
| 516 | sizeToBytes(dsLengthBytes,dataLength); //SZ_SIZE_TYPE: 4 or 8 |
---|
| 517 | for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++) |
---|
| 518 | (*newByteData)[k++] = dsLengthBytes[i]; |
---|
| 519 | |
---|
| 520 | if(sysEndianType==BIG_ENDIAN_SYSTEM) |
---|
| 521 | memcpy((*newByteData)+4+MetaDataByteLength+exe_params->SZ_SIZE_TYPE, oriData, dataLength*floatSize); |
---|
| 522 | else |
---|
| 523 | { |
---|
| 524 | unsigned char* p = (*newByteData)+4+MetaDataByteLength+exe_params->SZ_SIZE_TYPE; |
---|
| 525 | for(i=0;i<dataLength;i++,p+=floatSize) |
---|
| 526 | floatToBytes(p, oriData[i]); |
---|
| 527 | } |
---|
| 528 | *outSize = totalByteLength; |
---|
| 529 | } |
---|
| 530 | |
---|
| 531 | char SZ_compress_args_float_NoCkRngeNoGzip_1D(unsigned char** newByteData, float *oriData, |
---|
| 532 | size_t dataLength, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f) |
---|
| 533 | { |
---|
| 534 | char compressionType = 0; |
---|
| 535 | TightDataPointStorageF* tdps = NULL; |
---|
| 536 | |
---|
| 537 | #ifdef HAVE_TIMECMPR |
---|
| 538 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 539 | { |
---|
| 540 | int timestep = sz_tsc->currentStep; |
---|
| 541 | if(timestep % confparams_cpr->snapshotCmprStep != 0) |
---|
| 542 | { |
---|
| 543 | tdps = SZ_compress_float_1D_MDQ_ts(oriData, dataLength, multisteps, realPrecision, valueRangeSize, medianValue_f); |
---|
| 544 | compressionType = 1; //time-series based compression |
---|
| 545 | } |
---|
| 546 | else |
---|
| 547 | { |
---|
| 548 | tdps = SZ_compress_float_1D_MDQ(oriData, dataLength, realPrecision, valueRangeSize, medianValue_f); |
---|
| 549 | compressionType = 0; //snapshot-based compression |
---|
| 550 | multisteps->lastSnapshotStep = timestep; |
---|
| 551 | } |
---|
| 552 | } |
---|
| 553 | else |
---|
| 554 | #endif |
---|
| 555 | tdps = SZ_compress_float_1D_MDQ(oriData, dataLength, realPrecision, valueRangeSize, medianValue_f); |
---|
| 556 | |
---|
| 557 | convertTDPStoFlatBytes_float(tdps, newByteData, outSize); |
---|
| 558 | |
---|
| 559 | if(*outSize>dataLength*sizeof(float)) |
---|
| 560 | SZ_compress_args_float_StoreOriData(oriData, dataLength+2, tdps, newByteData, outSize); |
---|
| 561 | |
---|
| 562 | free_TightDataPointStorageF(tdps); |
---|
| 563 | return compressionType; |
---|
| 564 | } |
---|
| 565 | |
---|
| 566 | TightDataPointStorageF* SZ_compress_float_2D_MDQ(float *oriData, size_t r1, size_t r2, double realPrecision, float valueRangeSize, float medianValue_f) |
---|
| 567 | { |
---|
| 568 | #ifdef HAVE_TIMECMPR |
---|
| 569 | float* decData = NULL; |
---|
| 570 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 571 | decData = (float*)(multisteps->hist_data); |
---|
| 572 | #endif |
---|
| 573 | |
---|
| 574 | unsigned int quantization_intervals; |
---|
| 575 | if(exe_params->optQuantMode==1) |
---|
| 576 | { |
---|
| 577 | quantization_intervals = optimize_intervals_float_2D_opt(oriData, r1, r2, realPrecision); |
---|
| 578 | updateQuantizationInfo(quantization_intervals); |
---|
| 579 | } |
---|
| 580 | else |
---|
| 581 | quantization_intervals = exe_params->intvCapacity; |
---|
| 582 | size_t i,j; |
---|
| 583 | int reqLength; |
---|
| 584 | float pred1D, pred2D; |
---|
| 585 | float diff = 0.0; |
---|
| 586 | double itvNum = 0; |
---|
| 587 | float *P0, *P1; |
---|
| 588 | |
---|
| 589 | size_t dataLength = r1*r2; |
---|
| 590 | |
---|
| 591 | P0 = (float*)malloc(r2*sizeof(float)); |
---|
| 592 | memset(P0, 0, r2*sizeof(float)); |
---|
| 593 | P1 = (float*)malloc(r2*sizeof(float)); |
---|
| 594 | memset(P1, 0, r2*sizeof(float)); |
---|
| 595 | |
---|
| 596 | float medianValue = medianValue_f; |
---|
| 597 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
| 598 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 599 | |
---|
| 600 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 601 | //type[dataLength]=0; |
---|
| 602 | |
---|
| 603 | float* spaceFillingValue = oriData; // |
---|
| 604 | |
---|
| 605 | DynamicIntArray *exactLeadNumArray; |
---|
| 606 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 607 | |
---|
| 608 | DynamicByteArray *exactMidByteArray; |
---|
| 609 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 610 | |
---|
| 611 | DynamicIntArray *resiBitArray; |
---|
| 612 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 613 | |
---|
| 614 | type[0] = 0; |
---|
| 615 | unsigned char preDataBytes[4]; |
---|
| 616 | intToBytes_bigEndian(preDataBytes, 0); |
---|
| 617 | |
---|
| 618 | int reqBytesLength = reqLength/8; |
---|
| 619 | int resiBitsLength = reqLength%8; |
---|
| 620 | |
---|
| 621 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
| 622 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 623 | |
---|
| 624 | /* Process Row-0 data 0*/ |
---|
| 625 | type[0] = 0; |
---|
| 626 | compressSingleFloatValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 627 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 628 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 629 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 630 | P1[0] = vce->data; |
---|
| 631 | #ifdef HAVE_TIMECMPR |
---|
| 632 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 633 | decData[0] = vce->data; |
---|
| 634 | #endif |
---|
| 635 | |
---|
| 636 | float curData; |
---|
| 637 | |
---|
| 638 | /* Process Row-0 data 1*/ |
---|
| 639 | pred1D = P1[0]; |
---|
| 640 | curData = spaceFillingValue[1]; |
---|
| 641 | diff = curData - pred1D; |
---|
| 642 | |
---|
| 643 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 644 | |
---|
| 645 | if (itvNum < exe_params->intvCapacity) |
---|
| 646 | { |
---|
| 647 | if (diff < 0) itvNum = -itvNum; |
---|
| 648 | type[1] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 649 | P1[1] = pred1D + 2 * (type[1] - exe_params->intvRadius) * realPrecision; |
---|
| 650 | |
---|
| 651 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 652 | if(fabs(spaceFillingValue[1]-P1[1])>realPrecision) |
---|
| 653 | { |
---|
| 654 | type[1] = 0; |
---|
| 655 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 656 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 657 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 658 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 659 | |
---|
| 660 | P1[1] = vce->data; |
---|
| 661 | } |
---|
| 662 | } |
---|
| 663 | else |
---|
| 664 | { |
---|
| 665 | type[1] = 0; |
---|
| 666 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 667 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 668 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 669 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 670 | P1[1] = vce->data; |
---|
| 671 | } |
---|
| 672 | #ifdef HAVE_TIMECMPR |
---|
| 673 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 674 | decData[1] = P1[1]; |
---|
| 675 | #endif |
---|
| 676 | |
---|
| 677 | /* Process Row-0 data 2 --> data r2-1 */ |
---|
| 678 | for (j = 2; j < r2; j++) |
---|
| 679 | { |
---|
| 680 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
| 681 | curData = spaceFillingValue[j]; |
---|
| 682 | diff = curData - pred1D; |
---|
| 683 | |
---|
| 684 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 685 | |
---|
| 686 | if (itvNum < exe_params->intvCapacity) |
---|
| 687 | { |
---|
| 688 | if (diff < 0) itvNum = -itvNum; |
---|
| 689 | type[j] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 690 | P1[j] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
| 691 | |
---|
| 692 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 693 | if(fabs(curData-P1[j])>realPrecision) |
---|
| 694 | { |
---|
| 695 | type[j] = 0; |
---|
| 696 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 697 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 698 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 699 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 700 | |
---|
| 701 | P1[j] = vce->data; |
---|
| 702 | } |
---|
| 703 | } |
---|
| 704 | else |
---|
| 705 | { |
---|
| 706 | type[j] = 0; |
---|
| 707 | compressSingleFloatValue(vce,curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 708 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 709 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 710 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 711 | P1[j] = vce->data; |
---|
| 712 | } |
---|
| 713 | #ifdef HAVE_TIMECMPR |
---|
| 714 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 715 | decData[j] = P1[j]; |
---|
| 716 | #endif |
---|
| 717 | } |
---|
| 718 | |
---|
| 719 | /* Process Row-1 --> Row-r1-1 */ |
---|
| 720 | size_t index; |
---|
| 721 | for (i = 1; i < r1; i++) |
---|
| 722 | { |
---|
| 723 | /* Process row-i data 0 */ |
---|
| 724 | index = i*r2; |
---|
| 725 | pred1D = P1[0]; |
---|
| 726 | curData = spaceFillingValue[index]; |
---|
| 727 | diff = curData - pred1D; |
---|
| 728 | |
---|
| 729 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 730 | |
---|
| 731 | if (itvNum < exe_params->intvCapacity) |
---|
| 732 | { |
---|
| 733 | if (diff < 0) itvNum = -itvNum; |
---|
| 734 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 735 | P0[0] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 736 | |
---|
| 737 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 738 | if(fabs(curData-P0[0])>realPrecision) |
---|
| 739 | { |
---|
| 740 | type[index] = 0; |
---|
| 741 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 742 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 743 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 744 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 745 | |
---|
| 746 | P0[0] = vce->data; |
---|
| 747 | } |
---|
| 748 | } |
---|
| 749 | else |
---|
| 750 | { |
---|
| 751 | type[index] = 0; |
---|
| 752 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 753 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 754 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 755 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 756 | P0[0] = vce->data; |
---|
| 757 | } |
---|
| 758 | #ifdef HAVE_TIMECMPR |
---|
| 759 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 760 | decData[index] = P0[0]; |
---|
| 761 | #endif |
---|
| 762 | |
---|
| 763 | /* Process row-i data 1 --> r2-1*/ |
---|
| 764 | for (j = 1; j < r2; j++) |
---|
| 765 | { |
---|
| 766 | index = i*r2+j; |
---|
| 767 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
| 768 | |
---|
| 769 | curData = spaceFillingValue[index]; |
---|
| 770 | diff = curData - pred2D; |
---|
| 771 | |
---|
| 772 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 773 | |
---|
| 774 | if (itvNum < exe_params->intvCapacity) |
---|
| 775 | { |
---|
| 776 | if (diff < 0) itvNum = -itvNum; |
---|
| 777 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 778 | P0[j] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 779 | |
---|
| 780 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 781 | if(fabs(curData-P0[j])>realPrecision) |
---|
| 782 | { |
---|
| 783 | type[index] = 0; |
---|
| 784 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 785 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 786 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 787 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 788 | |
---|
| 789 | P0[j] = vce->data; |
---|
| 790 | } |
---|
| 791 | } |
---|
| 792 | else |
---|
| 793 | { |
---|
| 794 | type[index] = 0; |
---|
| 795 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 796 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 797 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 798 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 799 | P0[j] = vce->data; |
---|
| 800 | } |
---|
| 801 | #ifdef HAVE_TIMECMPR |
---|
| 802 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 803 | decData[index] = P0[j]; |
---|
| 804 | #endif |
---|
| 805 | } |
---|
| 806 | |
---|
| 807 | float *Pt; |
---|
| 808 | Pt = P1; |
---|
| 809 | P1 = P0; |
---|
| 810 | P0 = Pt; |
---|
| 811 | } |
---|
| 812 | |
---|
| 813 | if(r2!=1) |
---|
| 814 | free(P0); |
---|
| 815 | free(P1); |
---|
| 816 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 817 | |
---|
| 818 | TightDataPointStorageF* tdps; |
---|
| 819 | |
---|
| 820 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
| 821 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 822 | exactLeadNumArray->array, |
---|
| 823 | resiBitArray->array, resiBitArray->size, |
---|
| 824 | resiBitsLength, |
---|
| 825 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 826 | |
---|
| 827 | // printf("exactDataNum=%d, expSegmentsInBytes_size=%d, exactMidByteArray->size=%d\n", |
---|
| 828 | // exactDataNum, expSegmentsInBytes_size, exactMidByteArray->size); |
---|
| 829 | |
---|
| 830 | // for(i = 3800;i<3844;i++) |
---|
| 831 | // printf("exactLeadNumArray->array[%d]=%d\n",i,exactLeadNumArray->array[i]); |
---|
| 832 | |
---|
| 833 | //free memory |
---|
| 834 | free_DIA(exactLeadNumArray); |
---|
| 835 | free_DIA(resiBitArray); |
---|
| 836 | free(type); |
---|
| 837 | free(vce); |
---|
| 838 | free(lce); |
---|
| 839 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 840 | |
---|
| 841 | return tdps; |
---|
| 842 | } |
---|
| 843 | |
---|
| 844 | /** |
---|
| 845 | * |
---|
| 846 | * Note: @r1 is high dimension |
---|
| 847 | * @r2 is low dimension |
---|
| 848 | * */ |
---|
| 849 | char SZ_compress_args_float_NoCkRngeNoGzip_2D(unsigned char** newByteData, float *oriData, size_t r1, size_t r2, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f) |
---|
| 850 | { |
---|
| 851 | size_t dataLength = r1*r2; |
---|
| 852 | char compressionType = 0; |
---|
| 853 | TightDataPointStorageF* tdps = NULL; |
---|
| 854 | |
---|
| 855 | #ifdef HAVE_TIMECMPR |
---|
| 856 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 857 | { |
---|
| 858 | int timestep = sz_tsc->currentStep; |
---|
| 859 | if(timestep % confparams_cpr->snapshotCmprStep != 0) |
---|
| 860 | { |
---|
| 861 | tdps = SZ_compress_float_1D_MDQ_ts(oriData, dataLength, multisteps, realPrecision, valueRangeSize, medianValue_f); |
---|
| 862 | compressionType = 1; //time-series based compression |
---|
| 863 | } |
---|
| 864 | else |
---|
| 865 | { |
---|
| 866 | tdps = SZ_compress_float_2D_MDQ(oriData, r1, r2, realPrecision, valueRangeSize, medianValue_f); |
---|
| 867 | compressionType = 0; //snapshot-based compression |
---|
| 868 | multisteps->lastSnapshotStep = timestep; |
---|
| 869 | } |
---|
| 870 | } |
---|
| 871 | else |
---|
| 872 | #endif |
---|
| 873 | tdps = SZ_compress_float_2D_MDQ(oriData, r1, r2, realPrecision, valueRangeSize, medianValue_f); |
---|
| 874 | |
---|
| 875 | convertTDPStoFlatBytes_float(tdps, newByteData, outSize); |
---|
| 876 | |
---|
| 877 | if(*outSize>dataLength*sizeof(float)) |
---|
| 878 | SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 879 | |
---|
| 880 | free_TightDataPointStorageF(tdps); |
---|
| 881 | |
---|
| 882 | return compressionType; |
---|
| 883 | } |
---|
| 884 | |
---|
| 885 | TightDataPointStorageF* SZ_compress_float_3D_MDQ(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, float valueRangeSize, float medianValue_f) |
---|
| 886 | { |
---|
| 887 | #ifdef HAVE_TIMECMPR |
---|
| 888 | float* decData = NULL; |
---|
| 889 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 890 | decData = (float*)(multisteps->hist_data); |
---|
| 891 | #endif |
---|
| 892 | |
---|
| 893 | unsigned int quantization_intervals; |
---|
| 894 | if(exe_params->optQuantMode==1) |
---|
| 895 | { |
---|
| 896 | quantization_intervals = optimize_intervals_float_3D_opt(oriData, r1, r2, r3, realPrecision); |
---|
| 897 | updateQuantizationInfo(quantization_intervals); |
---|
| 898 | } |
---|
| 899 | else |
---|
| 900 | quantization_intervals = exe_params->intvCapacity; |
---|
| 901 | size_t i,j,k; |
---|
| 902 | int reqLength; |
---|
| 903 | float pred1D, pred2D, pred3D; |
---|
| 904 | float diff = 0.0; |
---|
| 905 | double itvNum = 0; |
---|
| 906 | float *P0, *P1; |
---|
| 907 | |
---|
| 908 | size_t dataLength = r1*r2*r3; |
---|
| 909 | size_t r23 = r2*r3; |
---|
| 910 | P0 = (float*)malloc(r23*sizeof(float)); |
---|
| 911 | P1 = (float*)malloc(r23*sizeof(float)); |
---|
| 912 | |
---|
| 913 | float medianValue = medianValue_f; |
---|
| 914 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
| 915 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 916 | |
---|
| 917 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 918 | |
---|
| 919 | float* spaceFillingValue = oriData; // |
---|
| 920 | |
---|
| 921 | DynamicIntArray *exactLeadNumArray; |
---|
| 922 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 923 | |
---|
| 924 | DynamicByteArray *exactMidByteArray; |
---|
| 925 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 926 | |
---|
| 927 | DynamicIntArray *resiBitArray; |
---|
| 928 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 929 | |
---|
| 930 | unsigned char preDataBytes[4]; |
---|
| 931 | intToBytes_bigEndian(preDataBytes, 0); |
---|
| 932 | |
---|
| 933 | int reqBytesLength = reqLength/8; |
---|
| 934 | int resiBitsLength = reqLength%8; |
---|
| 935 | |
---|
| 936 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
| 937 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 938 | |
---|
| 939 | |
---|
| 940 | /////////////////////////// Process layer-0 /////////////////////////// |
---|
| 941 | /* Process Row-0 data 0*/ |
---|
| 942 | type[0] = 0; |
---|
| 943 | compressSingleFloatValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 944 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 945 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 946 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 947 | P1[0] = vce->data; |
---|
| 948 | #ifdef HAVE_TIMECMPR |
---|
| 949 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 950 | decData[0] = P1[0]; |
---|
| 951 | #endif |
---|
| 952 | |
---|
| 953 | float curData; |
---|
| 954 | |
---|
| 955 | /* Process Row-0 data 1*/ |
---|
| 956 | pred1D = P1[0]; |
---|
| 957 | curData = spaceFillingValue[1]; |
---|
| 958 | diff = curData - pred1D; |
---|
| 959 | |
---|
| 960 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 961 | |
---|
| 962 | if (itvNum < exe_params->intvCapacity) |
---|
| 963 | { |
---|
| 964 | if (diff < 0) itvNum = -itvNum; |
---|
| 965 | type[1] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 966 | P1[1] = pred1D + 2 * (type[1] - exe_params->intvRadius) * realPrecision; |
---|
| 967 | |
---|
| 968 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 969 | if(fabs(curData-P1[1])>realPrecision) |
---|
| 970 | { |
---|
| 971 | type[1] = 0; |
---|
| 972 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 973 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 974 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 975 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 976 | |
---|
| 977 | P1[1] = vce->data; |
---|
| 978 | } |
---|
| 979 | } |
---|
| 980 | else |
---|
| 981 | { |
---|
| 982 | type[1] = 0; |
---|
| 983 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 984 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 985 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 986 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 987 | P1[1] = vce->data; |
---|
| 988 | } |
---|
| 989 | #ifdef HAVE_TIMECMPR |
---|
| 990 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 991 | decData[1] = P1[1]; |
---|
| 992 | #endif |
---|
| 993 | |
---|
| 994 | /* Process Row-0 data 2 --> data r3-1 */ |
---|
| 995 | for (j = 2; j < r3; j++) |
---|
| 996 | { |
---|
| 997 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
| 998 | curData = spaceFillingValue[j]; |
---|
| 999 | diff = curData - pred1D; |
---|
| 1000 | |
---|
| 1001 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1002 | |
---|
| 1003 | if (itvNum < exe_params->intvCapacity) |
---|
| 1004 | { |
---|
| 1005 | if (diff < 0) itvNum = -itvNum; |
---|
| 1006 | type[j] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1007 | P1[j] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
| 1008 | |
---|
| 1009 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 1010 | if(fabs(curData-P1[j])>realPrecision) |
---|
| 1011 | { |
---|
| 1012 | type[j] = 0; |
---|
| 1013 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1014 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1015 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1016 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1017 | |
---|
| 1018 | P1[j] = vce->data; |
---|
| 1019 | } |
---|
| 1020 | } |
---|
| 1021 | else |
---|
| 1022 | { |
---|
| 1023 | type[j] = 0; |
---|
| 1024 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1025 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1026 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1027 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1028 | P1[j] = vce->data; |
---|
| 1029 | } |
---|
| 1030 | #ifdef HAVE_TIMECMPR |
---|
| 1031 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1032 | decData[j] = P1[j]; |
---|
| 1033 | #endif |
---|
| 1034 | } |
---|
| 1035 | |
---|
| 1036 | /* Process Row-1 --> Row-r2-1 */ |
---|
| 1037 | size_t index; |
---|
| 1038 | for (i = 1; i < r2; i++) |
---|
| 1039 | { |
---|
| 1040 | /* Process row-i data 0 */ |
---|
| 1041 | index = i*r3; |
---|
| 1042 | pred1D = P1[index-r3]; |
---|
| 1043 | curData = spaceFillingValue[index]; |
---|
| 1044 | diff = curData - pred1D; |
---|
| 1045 | |
---|
| 1046 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1047 | |
---|
| 1048 | if (itvNum < exe_params->intvCapacity) |
---|
| 1049 | { |
---|
| 1050 | if (diff < 0) itvNum = -itvNum; |
---|
| 1051 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1052 | P1[index] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1053 | |
---|
| 1054 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 1055 | if(fabs(curData-P1[index])>realPrecision) |
---|
| 1056 | { |
---|
| 1057 | type[index] = 0; |
---|
| 1058 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1059 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1060 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1061 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1062 | |
---|
| 1063 | P1[index] = vce->data; |
---|
| 1064 | } |
---|
| 1065 | } |
---|
| 1066 | else |
---|
| 1067 | { |
---|
| 1068 | type[index] = 0; |
---|
| 1069 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1070 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1071 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1072 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1073 | P1[index] = vce->data; |
---|
| 1074 | } |
---|
| 1075 | #ifdef HAVE_TIMECMPR |
---|
| 1076 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1077 | decData[index] = P1[index]; |
---|
| 1078 | #endif |
---|
| 1079 | |
---|
| 1080 | /* Process row-i data 1 --> data r3-1*/ |
---|
| 1081 | for (j = 1; j < r3; j++) |
---|
| 1082 | { |
---|
| 1083 | index = i*r3+j; |
---|
| 1084 | pred2D = P1[index-1] + P1[index-r3] - P1[index-r3-1]; |
---|
| 1085 | |
---|
| 1086 | curData = spaceFillingValue[index]; |
---|
| 1087 | diff = curData - pred2D; |
---|
| 1088 | |
---|
| 1089 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1090 | |
---|
| 1091 | if (itvNum < exe_params->intvCapacity) |
---|
| 1092 | { |
---|
| 1093 | if (diff < 0) itvNum = -itvNum; |
---|
| 1094 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1095 | P1[index] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1096 | |
---|
| 1097 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 1098 | if(fabs(curData-P1[index])>realPrecision) |
---|
| 1099 | { |
---|
| 1100 | type[index] = 0; |
---|
| 1101 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1102 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1103 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1104 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1105 | |
---|
| 1106 | P1[index] = vce->data; |
---|
| 1107 | } |
---|
| 1108 | } |
---|
| 1109 | else |
---|
| 1110 | { |
---|
| 1111 | type[index] = 0; |
---|
| 1112 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1113 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1114 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1115 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1116 | P1[index] = vce->data; |
---|
| 1117 | } |
---|
| 1118 | #ifdef HAVE_TIMECMPR |
---|
| 1119 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1120 | decData[index] = P1[index]; |
---|
| 1121 | #endif |
---|
| 1122 | } |
---|
| 1123 | } |
---|
| 1124 | |
---|
| 1125 | |
---|
| 1126 | /////////////////////////// Process layer-1 --> layer-r1-1 /////////////////////////// |
---|
| 1127 | |
---|
| 1128 | for (k = 1; k < r1; k++) |
---|
| 1129 | { |
---|
| 1130 | /* Process Row-0 data 0*/ |
---|
| 1131 | index = k*r23; |
---|
| 1132 | pred1D = P1[0]; |
---|
| 1133 | curData = spaceFillingValue[index]; |
---|
| 1134 | diff = curData - pred1D; |
---|
| 1135 | |
---|
| 1136 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1137 | |
---|
| 1138 | if (itvNum < exe_params->intvCapacity) |
---|
| 1139 | { |
---|
| 1140 | if (diff < 0) itvNum = -itvNum; |
---|
| 1141 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1142 | P0[0] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1143 | |
---|
| 1144 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 1145 | if(fabs(curData-P0[0])>realPrecision) |
---|
| 1146 | { |
---|
| 1147 | type[index] = 0; |
---|
| 1148 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1149 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1150 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1151 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1152 | |
---|
| 1153 | P0[0] = vce->data; |
---|
| 1154 | } |
---|
| 1155 | } |
---|
| 1156 | else |
---|
| 1157 | { |
---|
| 1158 | type[index] = 0; |
---|
| 1159 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1160 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1161 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1162 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1163 | P0[0] = vce->data; |
---|
| 1164 | } |
---|
| 1165 | #ifdef HAVE_TIMECMPR |
---|
| 1166 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1167 | decData[index] = P0[0]; |
---|
| 1168 | #endif |
---|
| 1169 | |
---|
| 1170 | /* Process Row-0 data 1 --> data r3-1 */ |
---|
| 1171 | for (j = 1; j < r3; j++) |
---|
| 1172 | { |
---|
| 1173 | //index = k*r2*r3+j; |
---|
| 1174 | index ++; |
---|
| 1175 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
| 1176 | curData = spaceFillingValue[index]; |
---|
| 1177 | diff = spaceFillingValue[index] - pred2D; |
---|
| 1178 | |
---|
| 1179 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1180 | |
---|
| 1181 | if (itvNum < exe_params->intvCapacity) |
---|
| 1182 | { |
---|
| 1183 | if (diff < 0) itvNum = -itvNum; |
---|
| 1184 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1185 | P0[j] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1186 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 1187 | if(fabs(curData-P0[j])>realPrecision) |
---|
| 1188 | { |
---|
| 1189 | type[index] = 0; |
---|
| 1190 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1191 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1192 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1193 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1194 | |
---|
| 1195 | P0[j] = vce->data; |
---|
| 1196 | } |
---|
| 1197 | } |
---|
| 1198 | else |
---|
| 1199 | { |
---|
| 1200 | type[index] = 0; |
---|
| 1201 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1202 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1203 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1204 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1205 | P0[j] = vce->data; |
---|
| 1206 | } |
---|
| 1207 | #ifdef HAVE_TIMECMPR |
---|
| 1208 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1209 | decData[index] = P0[j]; |
---|
| 1210 | #endif |
---|
| 1211 | } |
---|
| 1212 | |
---|
| 1213 | /* Process Row-1 --> Row-r2-1 */ |
---|
| 1214 | size_t index2D; |
---|
| 1215 | for (i = 1; i < r2; i++) |
---|
| 1216 | { |
---|
| 1217 | /* Process Row-i data 0 */ |
---|
| 1218 | index = k*r23 + i*r3; |
---|
| 1219 | index2D = i*r3; |
---|
| 1220 | pred2D = P0[index2D-r3] + P1[index2D] - P1[index2D-r3]; |
---|
| 1221 | curData = spaceFillingValue[index]; |
---|
| 1222 | diff = spaceFillingValue[index] - pred2D; |
---|
| 1223 | |
---|
| 1224 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1225 | |
---|
| 1226 | if (itvNum < exe_params->intvCapacity) |
---|
| 1227 | { |
---|
| 1228 | if (diff < 0) itvNum = -itvNum; |
---|
| 1229 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1230 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1231 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 1232 | if(fabs(curData-P0[index2D])>realPrecision) |
---|
| 1233 | { |
---|
| 1234 | type[index] = 0; |
---|
| 1235 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1236 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1237 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1238 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1239 | |
---|
| 1240 | P0[index2D] = vce->data; |
---|
| 1241 | } |
---|
| 1242 | } |
---|
| 1243 | else |
---|
| 1244 | { |
---|
| 1245 | type[index] = 0; |
---|
| 1246 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1247 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1248 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1249 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1250 | P0[index2D] = vce->data; |
---|
| 1251 | } |
---|
| 1252 | #ifdef HAVE_TIMECMPR |
---|
| 1253 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1254 | decData[index] = P0[index2D]; |
---|
| 1255 | #endif |
---|
| 1256 | |
---|
| 1257 | /* Process Row-i data 1 --> data r3-1 */ |
---|
| 1258 | for (j = 1; j < r3; j++) |
---|
| 1259 | { |
---|
| 1260 | // if(k==63&&i==43&&j==27) |
---|
| 1261 | // printf("i=%d\n", i); |
---|
| 1262 | //index = k*r2*r3 + i*r3 + j; |
---|
| 1263 | index ++; |
---|
| 1264 | index2D = i*r3 + j; |
---|
| 1265 | pred3D = P0[index2D-1] + P0[index2D-r3]+ P1[index2D] - P0[index2D-r3-1] - P1[index2D-r3] - P1[index2D-1] + P1[index2D-r3-1]; |
---|
| 1266 | curData = spaceFillingValue[index]; |
---|
| 1267 | diff = curData - pred3D; |
---|
| 1268 | |
---|
| 1269 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1270 | |
---|
| 1271 | if (itvNum < exe_params->intvCapacity) |
---|
| 1272 | { |
---|
| 1273 | if (diff < 0) itvNum = -itvNum; |
---|
| 1274 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1275 | P0[index2D] = pred3D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1276 | |
---|
| 1277 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 1278 | if(fabs(curData-P0[index2D])>realPrecision) |
---|
| 1279 | { |
---|
| 1280 | type[index] = 0; |
---|
| 1281 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1282 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1283 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1284 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1285 | |
---|
| 1286 | P0[index2D] = vce->data; |
---|
| 1287 | } |
---|
| 1288 | } |
---|
| 1289 | else |
---|
| 1290 | { |
---|
| 1291 | type[index] = 0; |
---|
| 1292 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1293 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1294 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1295 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1296 | P0[index2D] = vce->data; |
---|
| 1297 | } |
---|
| 1298 | #ifdef HAVE_TIMECMPR |
---|
| 1299 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1300 | decData[index] = P0[index2D]; |
---|
| 1301 | #endif |
---|
| 1302 | } |
---|
| 1303 | } |
---|
| 1304 | |
---|
| 1305 | float *Pt; |
---|
| 1306 | Pt = P1; |
---|
| 1307 | P1 = P0; |
---|
| 1308 | P0 = Pt; |
---|
| 1309 | } |
---|
| 1310 | if(r23!=1) |
---|
| 1311 | free(P0); |
---|
| 1312 | free(P1); |
---|
| 1313 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 1314 | |
---|
| 1315 | TightDataPointStorageF* tdps; |
---|
| 1316 | |
---|
| 1317 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
| 1318 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 1319 | exactLeadNumArray->array, |
---|
| 1320 | resiBitArray->array, resiBitArray->size, |
---|
| 1321 | resiBitsLength, |
---|
| 1322 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 1323 | |
---|
| 1324 | //sdi:Debug |
---|
| 1325 | /* int sum =0; |
---|
| 1326 | for(i=0;i<dataLength;i++) |
---|
| 1327 | if(type[i]==0) sum++; |
---|
| 1328 | printf("opt_quantizations=%d, exactDataNum=%d, sum=%d\n",quantization_intervals, exactDataNum, sum);*/ |
---|
| 1329 | |
---|
| 1330 | |
---|
| 1331 | // printf("exactDataNum=%d, expSegmentsInBytes_size=%d, exactMidByteArray->size=%d\n", |
---|
| 1332 | // exactDataNum, expSegmentsInBytes_size, exactMidByteArray->size); |
---|
| 1333 | |
---|
| 1334 | //free memory |
---|
| 1335 | free_DIA(exactLeadNumArray); |
---|
| 1336 | free_DIA(resiBitArray); |
---|
| 1337 | free(type); |
---|
| 1338 | free(vce); |
---|
| 1339 | free(lce); |
---|
| 1340 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 1341 | |
---|
| 1342 | return tdps; |
---|
| 1343 | } |
---|
| 1344 | |
---|
| 1345 | char SZ_compress_args_float_NoCkRngeNoGzip_3D(unsigned char** newByteData, float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f) |
---|
| 1346 | { |
---|
| 1347 | size_t dataLength = r1*r2*r3; |
---|
| 1348 | char compressionType = 0; |
---|
| 1349 | TightDataPointStorageF* tdps = NULL; |
---|
| 1350 | |
---|
| 1351 | #ifdef HAVE_TIMECMPR |
---|
| 1352 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1353 | { |
---|
| 1354 | int timestep = sz_tsc->currentStep; |
---|
| 1355 | if(timestep % confparams_cpr->snapshotCmprStep != 0) |
---|
| 1356 | { |
---|
| 1357 | tdps = SZ_compress_float_1D_MDQ_ts(oriData, dataLength, multisteps, realPrecision, valueRangeSize, medianValue_f); |
---|
| 1358 | compressionType = 1; //time-series based compression |
---|
| 1359 | } |
---|
| 1360 | else |
---|
[9ee2ce3] | 1361 | { |
---|
| 1362 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
| 1363 | tdps = SZ_compress_float_3D_MDQ(oriData, r1, r2, r3, realPrecision, valueRangeSize, medianValue_f); |
---|
| 1364 | else |
---|
| 1365 | *newByteData = SZ_compress_float_3D_MDQ_nonblocked_with_blocked_regression(oriData, r1, r2, r3, realPrecision, outSize); |
---|
[2c47b73] | 1366 | compressionType = 0; //snapshot-based compression |
---|
| 1367 | multisteps->lastSnapshotStep = timestep; |
---|
| 1368 | } |
---|
| 1369 | } |
---|
| 1370 | else |
---|
| 1371 | #endif |
---|
| 1372 | tdps = SZ_compress_float_3D_MDQ(oriData, r1, r2, r3, realPrecision, valueRangeSize, medianValue_f); |
---|
| 1373 | |
---|
[9ee2ce3] | 1374 | if(tdps!=NULL) |
---|
| 1375 | { |
---|
| 1376 | convertTDPStoFlatBytes_float(tdps, newByteData, outSize); |
---|
| 1377 | if(*outSize>dataLength*sizeof(float)) |
---|
| 1378 | SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 1379 | free_TightDataPointStorageF(tdps); |
---|
| 1380 | } |
---|
[2c47b73] | 1381 | |
---|
| 1382 | return compressionType; |
---|
| 1383 | } |
---|
| 1384 | |
---|
| 1385 | |
---|
| 1386 | TightDataPointStorageF* SZ_compress_float_4D_MDQ(float *oriData, size_t r1, size_t r2, size_t r3, size_t r4, double realPrecision, float valueRangeSize, float medianValue_f) |
---|
| 1387 | { |
---|
| 1388 | unsigned int quantization_intervals; |
---|
| 1389 | if(exe_params->optQuantMode==1) |
---|
| 1390 | { |
---|
| 1391 | quantization_intervals = optimize_intervals_float_4D(oriData, r1, r2, r3, r4, realPrecision); |
---|
| 1392 | updateQuantizationInfo(quantization_intervals); |
---|
| 1393 | } |
---|
| 1394 | else |
---|
| 1395 | quantization_intervals = exe_params->intvCapacity; |
---|
| 1396 | |
---|
| 1397 | size_t i,j,k; |
---|
| 1398 | int reqLength; |
---|
| 1399 | float pred1D, pred2D, pred3D; |
---|
| 1400 | float diff = 0.0; |
---|
| 1401 | double itvNum = 0; |
---|
| 1402 | float *P0, *P1; |
---|
| 1403 | |
---|
| 1404 | size_t dataLength = r1*r2*r3*r4; |
---|
| 1405 | |
---|
| 1406 | size_t r234 = r2*r3*r4; |
---|
| 1407 | size_t r34 = r3*r4; |
---|
| 1408 | |
---|
| 1409 | P0 = (float*)malloc(r34*sizeof(float)); |
---|
| 1410 | P1 = (float*)malloc(r34*sizeof(float)); |
---|
| 1411 | |
---|
| 1412 | float medianValue = medianValue_f; |
---|
| 1413 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
| 1414 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 1415 | |
---|
| 1416 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 1417 | |
---|
| 1418 | float* spaceFillingValue = oriData; // |
---|
| 1419 | |
---|
| 1420 | DynamicIntArray *exactLeadNumArray; |
---|
| 1421 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 1422 | |
---|
| 1423 | DynamicByteArray *exactMidByteArray; |
---|
| 1424 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 1425 | |
---|
| 1426 | DynamicIntArray *resiBitArray; |
---|
| 1427 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 1428 | |
---|
| 1429 | unsigned char preDataBytes[4]; |
---|
| 1430 | intToBytes_bigEndian(preDataBytes, 0); |
---|
| 1431 | |
---|
| 1432 | int reqBytesLength = reqLength/8; |
---|
| 1433 | int resiBitsLength = reqLength%8; |
---|
| 1434 | |
---|
| 1435 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
| 1436 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 1437 | |
---|
| 1438 | |
---|
| 1439 | size_t l; |
---|
| 1440 | for (l = 0; l < r1; l++) |
---|
| 1441 | { |
---|
| 1442 | |
---|
| 1443 | /////////////////////////// Process layer-0 /////////////////////////// |
---|
| 1444 | /* Process Row-0 data 0*/ |
---|
| 1445 | size_t index = l*r234; |
---|
| 1446 | size_t index2D = 0; |
---|
| 1447 | |
---|
| 1448 | type[index] = 0; |
---|
| 1449 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1450 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1451 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1452 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1453 | P1[index2D] = vce->data; |
---|
| 1454 | |
---|
| 1455 | /* Process Row-0 data 1*/ |
---|
| 1456 | index = l*r234+1; |
---|
| 1457 | index2D = 1; |
---|
| 1458 | |
---|
| 1459 | pred1D = P1[index2D-1]; |
---|
| 1460 | diff = spaceFillingValue[index] - pred1D; |
---|
| 1461 | |
---|
| 1462 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1463 | |
---|
| 1464 | if (itvNum < exe_params->intvCapacity) |
---|
| 1465 | { |
---|
| 1466 | if (diff < 0) itvNum = -itvNum; |
---|
| 1467 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1468 | P1[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1469 | } |
---|
| 1470 | else |
---|
| 1471 | { |
---|
| 1472 | type[index] = 0; |
---|
| 1473 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1474 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1475 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1476 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1477 | P1[index2D] = vce->data; |
---|
| 1478 | } |
---|
| 1479 | |
---|
| 1480 | /* Process Row-0 data 2 --> data r4-1 */ |
---|
| 1481 | for (j = 2; j < r4; j++) |
---|
| 1482 | { |
---|
| 1483 | index = l*r234+j; |
---|
| 1484 | index2D = j; |
---|
| 1485 | |
---|
| 1486 | pred1D = 2*P1[index2D-1] - P1[index2D-2]; |
---|
| 1487 | diff = spaceFillingValue[index] - pred1D; |
---|
| 1488 | |
---|
| 1489 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1490 | |
---|
| 1491 | if (itvNum < exe_params->intvCapacity) |
---|
| 1492 | { |
---|
| 1493 | if (diff < 0) itvNum = -itvNum; |
---|
| 1494 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1495 | P1[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1496 | } |
---|
| 1497 | else |
---|
| 1498 | { |
---|
| 1499 | type[index] = 0; |
---|
| 1500 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1501 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1502 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1503 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1504 | P1[index2D] = vce->data; |
---|
| 1505 | } |
---|
| 1506 | } |
---|
| 1507 | |
---|
| 1508 | /* Process Row-1 --> Row-r3-1 */ |
---|
| 1509 | for (i = 1; i < r3; i++) |
---|
| 1510 | { |
---|
| 1511 | /* Process row-i data 0 */ |
---|
| 1512 | index = l*r234+i*r4; |
---|
| 1513 | index2D = i*r4; |
---|
| 1514 | |
---|
| 1515 | pred1D = P1[index2D-r4]; |
---|
| 1516 | diff = spaceFillingValue[index] - pred1D; |
---|
| 1517 | |
---|
| 1518 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1519 | |
---|
| 1520 | if (itvNum < exe_params->intvCapacity) |
---|
| 1521 | { |
---|
| 1522 | if (diff < 0) itvNum = -itvNum; |
---|
| 1523 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1524 | P1[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1525 | } |
---|
| 1526 | else |
---|
| 1527 | { |
---|
| 1528 | type[index] = 0; |
---|
| 1529 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1530 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1531 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1532 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1533 | P1[index2D] = vce->data; |
---|
| 1534 | } |
---|
| 1535 | |
---|
| 1536 | /* Process row-i data 1 --> data r4-1*/ |
---|
| 1537 | for (j = 1; j < r4; j++) |
---|
| 1538 | { |
---|
| 1539 | index = l*r234+i*r4+j; |
---|
| 1540 | index2D = i*r4+j; |
---|
| 1541 | |
---|
| 1542 | pred2D = P1[index2D-1] + P1[index2D-r4] - P1[index2D-r4-1]; |
---|
| 1543 | |
---|
| 1544 | diff = spaceFillingValue[index] - pred2D; |
---|
| 1545 | |
---|
| 1546 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1547 | |
---|
| 1548 | if (itvNum < exe_params->intvCapacity) |
---|
| 1549 | { |
---|
| 1550 | if (diff < 0) itvNum = -itvNum; |
---|
| 1551 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1552 | P1[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1553 | } |
---|
| 1554 | else |
---|
| 1555 | { |
---|
| 1556 | type[index] = 0; |
---|
| 1557 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1558 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1559 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1560 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1561 | P1[index2D] = vce->data; |
---|
| 1562 | } |
---|
| 1563 | } |
---|
| 1564 | } |
---|
| 1565 | |
---|
| 1566 | |
---|
| 1567 | /////////////////////////// Process layer-1 --> layer-r2-1 /////////////////////////// |
---|
| 1568 | |
---|
| 1569 | for (k = 1; k < r2; k++) |
---|
| 1570 | { |
---|
| 1571 | /* Process Row-0 data 0*/ |
---|
| 1572 | index = l*r234+k*r34; |
---|
| 1573 | index2D = 0; |
---|
| 1574 | |
---|
| 1575 | pred1D = P1[index2D]; |
---|
| 1576 | diff = spaceFillingValue[index] - pred1D; |
---|
| 1577 | |
---|
| 1578 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1579 | |
---|
| 1580 | if (itvNum < exe_params->intvCapacity) |
---|
| 1581 | { |
---|
| 1582 | if (diff < 0) itvNum = -itvNum; |
---|
| 1583 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1584 | P0[index2D] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1585 | } |
---|
| 1586 | else |
---|
| 1587 | { |
---|
| 1588 | type[index] = 0; |
---|
| 1589 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1590 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1591 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1592 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1593 | P0[index2D] = vce->data; |
---|
| 1594 | } |
---|
| 1595 | |
---|
| 1596 | /* Process Row-0 data 1 --> data r4-1 */ |
---|
| 1597 | for (j = 1; j < r4; j++) |
---|
| 1598 | { |
---|
| 1599 | index = l*r234+k*r34+j; |
---|
| 1600 | index2D = j; |
---|
| 1601 | |
---|
| 1602 | pred2D = P0[index2D-1] + P1[index2D] - P1[index2D-1]; |
---|
| 1603 | diff = spaceFillingValue[index] - pred2D; |
---|
| 1604 | |
---|
| 1605 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1606 | |
---|
| 1607 | if (itvNum < exe_params->intvCapacity) |
---|
| 1608 | { |
---|
| 1609 | if (diff < 0) itvNum = -itvNum; |
---|
| 1610 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1611 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1612 | } |
---|
| 1613 | else |
---|
| 1614 | { |
---|
| 1615 | type[index] = 0; |
---|
| 1616 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1617 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1618 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1619 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1620 | P0[index2D] = vce->data; |
---|
| 1621 | } |
---|
| 1622 | } |
---|
| 1623 | |
---|
| 1624 | /* Process Row-1 --> Row-r3-1 */ |
---|
| 1625 | for (i = 1; i < r3; i++) |
---|
| 1626 | { |
---|
| 1627 | /* Process Row-i data 0 */ |
---|
| 1628 | index = l*r234+k*r34+i*r4; |
---|
| 1629 | index2D = i*r4; |
---|
| 1630 | |
---|
| 1631 | pred2D = P0[index2D-r4] + P1[index2D] - P1[index2D-r4]; |
---|
| 1632 | diff = spaceFillingValue[index] - pred2D; |
---|
| 1633 | |
---|
| 1634 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1635 | |
---|
| 1636 | if (itvNum < exe_params->intvCapacity) |
---|
| 1637 | { |
---|
| 1638 | if (diff < 0) itvNum = -itvNum; |
---|
| 1639 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1640 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1641 | } |
---|
| 1642 | else |
---|
| 1643 | { |
---|
| 1644 | type[index] = 0; |
---|
| 1645 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1646 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1647 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1648 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1649 | P0[index2D] = vce->data; |
---|
| 1650 | } |
---|
| 1651 | |
---|
| 1652 | /* Process Row-i data 1 --> data r4-1 */ |
---|
| 1653 | for (j = 1; j < r4; j++) |
---|
| 1654 | { |
---|
| 1655 | index = l*r234+k*r34+i*r4+j; |
---|
| 1656 | index2D = i*r4+j; |
---|
| 1657 | |
---|
| 1658 | pred3D = P0[index2D-1] + P0[index2D-r4]+ P1[index2D] - P0[index2D-r4-1] - P1[index2D-r4] - P1[index2D-1] + P1[index2D-r4-1]; |
---|
| 1659 | diff = spaceFillingValue[index] - pred3D; |
---|
| 1660 | |
---|
| 1661 | |
---|
| 1662 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 1663 | |
---|
| 1664 | if (itvNum < exe_params->intvCapacity) |
---|
| 1665 | { |
---|
| 1666 | if (diff < 0) itvNum = -itvNum; |
---|
| 1667 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 1668 | P0[index2D] = pred3D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 1669 | } |
---|
| 1670 | else |
---|
| 1671 | { |
---|
| 1672 | type[index] = 0; |
---|
| 1673 | compressSingleFloatValue(vce, spaceFillingValue[index], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 1674 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 1675 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 1676 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 1677 | P0[index2D] = vce->data; |
---|
| 1678 | } |
---|
| 1679 | } |
---|
| 1680 | } |
---|
| 1681 | |
---|
| 1682 | float *Pt; |
---|
| 1683 | Pt = P1; |
---|
| 1684 | P1 = P0; |
---|
| 1685 | P0 = Pt; |
---|
| 1686 | } |
---|
| 1687 | } |
---|
| 1688 | |
---|
| 1689 | free(P0); |
---|
| 1690 | free(P1); |
---|
| 1691 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 1692 | |
---|
| 1693 | TightDataPointStorageF* tdps; |
---|
| 1694 | |
---|
| 1695 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
| 1696 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 1697 | exactLeadNumArray->array, |
---|
| 1698 | resiBitArray->array, resiBitArray->size, |
---|
| 1699 | resiBitsLength, |
---|
| 1700 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 1701 | |
---|
| 1702 | //free memory |
---|
| 1703 | free_DIA(exactLeadNumArray); |
---|
| 1704 | free_DIA(resiBitArray); |
---|
| 1705 | free(type); |
---|
| 1706 | free(vce); |
---|
| 1707 | free(lce); |
---|
| 1708 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 1709 | |
---|
| 1710 | return tdps; |
---|
| 1711 | } |
---|
| 1712 | |
---|
| 1713 | char SZ_compress_args_float_NoCkRngeNoGzip_4D(unsigned char** newByteData, float *oriData, size_t r1, size_t r2, size_t r3, size_t r4, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f) |
---|
| 1714 | { |
---|
| 1715 | TightDataPointStorageF* tdps = SZ_compress_float_4D_MDQ(oriData, r1, r2, r3, r4, realPrecision, valueRangeSize, medianValue_f); |
---|
| 1716 | |
---|
| 1717 | convertTDPStoFlatBytes_float(tdps, newByteData, outSize); |
---|
| 1718 | |
---|
| 1719 | int dataLength = r1*r2*r3*r4; |
---|
| 1720 | if(*outSize>dataLength*sizeof(float)) |
---|
| 1721 | SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 1722 | |
---|
| 1723 | free_TightDataPointStorageF(tdps); |
---|
| 1724 | |
---|
| 1725 | return 0; |
---|
| 1726 | } |
---|
| 1727 | |
---|
| 1728 | void SZ_compress_args_float_withinRange(unsigned char** newByteData, float *oriData, size_t dataLength, size_t *outSize) |
---|
| 1729 | { |
---|
| 1730 | TightDataPointStorageF* tdps = (TightDataPointStorageF*) malloc(sizeof(TightDataPointStorageF)); |
---|
| 1731 | tdps->rtypeArray = NULL; |
---|
| 1732 | tdps->typeArray = NULL; |
---|
| 1733 | tdps->leadNumArray = NULL; |
---|
| 1734 | tdps->residualMidBits = NULL; |
---|
| 1735 | |
---|
| 1736 | tdps->allSameData = 1; |
---|
| 1737 | tdps->dataSeriesLength = dataLength; |
---|
| 1738 | tdps->exactMidBytes = (unsigned char*)malloc(sizeof(unsigned char)*4); |
---|
| 1739 | tdps->pwrErrBoundBytes = NULL; |
---|
| 1740 | tdps->isLossless = 0; |
---|
| 1741 | float value = oriData[0]; |
---|
| 1742 | floatToBytes(tdps->exactMidBytes, value); |
---|
| 1743 | tdps->exactMidBytes_size = 4; |
---|
| 1744 | |
---|
| 1745 | size_t tmpOutSize; |
---|
| 1746 | //unsigned char *tmpByteData; |
---|
| 1747 | convertTDPStoFlatBytes_float(tdps, newByteData, &tmpOutSize); |
---|
| 1748 | |
---|
| 1749 | //*newByteData = (unsigned char*)malloc(sizeof(unsigned char)*12); //for floating-point data (1+3+4+4) |
---|
| 1750 | //memcpy(*newByteData, tmpByteData, 12); |
---|
| 1751 | *outSize = tmpOutSize; //8+SZ_SIZE_TYPE; //8==3+1+4(float_size) |
---|
| 1752 | free_TightDataPointStorageF(tdps); |
---|
| 1753 | } |
---|
| 1754 | |
---|
| 1755 | int SZ_compress_args_float_wRngeNoGzip(unsigned char** newByteData, float *oriData, |
---|
| 1756 | size_t r5, size_t r4, size_t r3, size_t r2, size_t r1, size_t *outSize, |
---|
| 1757 | int errBoundMode, double absErr_Bound, double relBoundRatio, double pwrErrRatio) |
---|
| 1758 | { |
---|
| 1759 | int status = SZ_SCES; |
---|
| 1760 | size_t dataLength = computeDataLength(r5,r4,r3,r2,r1); |
---|
| 1761 | float valueRangeSize = 0, medianValue = 0; |
---|
| 1762 | |
---|
| 1763 | float min = computeRangeSize_float(oriData, dataLength, &valueRangeSize, &medianValue); |
---|
| 1764 | float max = min+valueRangeSize; |
---|
| 1765 | double realPrecision = getRealPrecision_float(valueRangeSize, errBoundMode, absErr_Bound, relBoundRatio, &status); |
---|
| 1766 | |
---|
| 1767 | if(valueRangeSize <= realPrecision) |
---|
| 1768 | { |
---|
| 1769 | SZ_compress_args_float_withinRange(newByteData, oriData, dataLength, outSize); |
---|
| 1770 | } |
---|
| 1771 | else |
---|
| 1772 | { |
---|
| 1773 | // SZ_compress_args_float_NoCkRngeNoGzip_2D(newByteData, oriData, r2, r1, realPrecision, outSize); |
---|
| 1774 | if(r5==0&&r4==0&&r3==0&&r2==0) |
---|
| 1775 | { |
---|
| 1776 | if(errBoundMode>=PW_REL) |
---|
| 1777 | { |
---|
[9ee2ce3] | 1778 | SZ_compress_args_float_NoCkRngeNoGzip_1D_pwr_pre_log(newByteData, oriData, pwrErrRatio, r1, outSize, min, max); |
---|
| 1779 | //SZ_compress_args_float_NoCkRngeNoGzip_1D_pwrgroup(newByteData, oriData, r1, absErr_Bound, relBoundRatio, pwrErrRatio, valueRangeSize, medianValue, outSize); |
---|
[2c47b73] | 1780 | } |
---|
| 1781 | else |
---|
| 1782 | SZ_compress_args_float_NoCkRngeNoGzip_1D(newByteData, oriData, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
| 1783 | } |
---|
| 1784 | else if(r5==0&&r4==0&&r3==0) |
---|
| 1785 | { |
---|
| 1786 | if(errBoundMode>=PW_REL) |
---|
[9ee2ce3] | 1787 | SZ_compress_args_float_NoCkRngeNoGzip_2D_pwr_pre_log(newByteData, oriData, pwrErrRatio, r2, r1, outSize, min, max); |
---|
[2c47b73] | 1788 | else |
---|
| 1789 | SZ_compress_args_float_NoCkRngeNoGzip_2D(newByteData, oriData, r2, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
| 1790 | } |
---|
| 1791 | else if(r5==0&&r4==0) |
---|
| 1792 | { |
---|
| 1793 | if(errBoundMode>=PW_REL) |
---|
[9ee2ce3] | 1794 | SZ_compress_args_float_NoCkRngeNoGzip_3D_pwr_pre_log(newByteData, oriData, pwrErrRatio, r3, r2, r1, outSize, min, max); |
---|
[2c47b73] | 1795 | else |
---|
| 1796 | SZ_compress_args_float_NoCkRngeNoGzip_3D(newByteData, oriData, r3, r2, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
| 1797 | } |
---|
| 1798 | else if(r5==0) |
---|
| 1799 | { |
---|
| 1800 | if(errBoundMode>=PW_REL) |
---|
[9ee2ce3] | 1801 | SZ_compress_args_float_NoCkRngeNoGzip_3D_pwr_pre_log(newByteData, oriData, pwrErrRatio, r4*r3, r2, r1, outSize, min, max); |
---|
[2c47b73] | 1802 | else |
---|
| 1803 | SZ_compress_args_float_NoCkRngeNoGzip_3D(newByteData, oriData, r4*r3, r2, r1, realPrecision, outSize, valueRangeSize, medianValue); |
---|
| 1804 | } |
---|
| 1805 | } |
---|
| 1806 | return status; |
---|
| 1807 | } |
---|
| 1808 | |
---|
| 1809 | int SZ_compress_args_float(unsigned char** newByteData, float *oriData, |
---|
| 1810 | size_t r5, size_t r4, size_t r3, size_t r2, size_t r1, size_t *outSize, |
---|
| 1811 | int errBoundMode, double absErr_Bound, double relBoundRatio, double pwRelBoundRatio) |
---|
| 1812 | { |
---|
| 1813 | confparams_cpr->errorBoundMode = errBoundMode; |
---|
| 1814 | if(errBoundMode==PW_REL) |
---|
| 1815 | { |
---|
| 1816 | confparams_cpr->pw_relBoundRatio = pwRelBoundRatio; |
---|
| 1817 | //confparams_cpr->pwr_type = SZ_PWR_MIN_TYPE; |
---|
| 1818 | if(confparams_cpr->pwr_type==SZ_PWR_AVG_TYPE && r3 != 0 ) |
---|
| 1819 | { |
---|
| 1820 | printf("Error: Current version doesn't support 3D data compression with point-wise relative error bound being based on pwrType=AVG\n"); |
---|
| 1821 | exit(0); |
---|
| 1822 | return SZ_NSCS; |
---|
| 1823 | } |
---|
| 1824 | } |
---|
| 1825 | int status = SZ_SCES; |
---|
| 1826 | size_t dataLength = computeDataLength(r5,r4,r3,r2,r1); |
---|
| 1827 | |
---|
| 1828 | if(dataLength <= MIN_NUM_OF_ELEMENTS) |
---|
| 1829 | { |
---|
| 1830 | *newByteData = SZ_skip_compress_float(oriData, dataLength, outSize); |
---|
| 1831 | return status; |
---|
| 1832 | } |
---|
| 1833 | |
---|
| 1834 | float valueRangeSize = 0, medianValue = 0; |
---|
| 1835 | |
---|
| 1836 | float min = computeRangeSize_float(oriData, dataLength, &valueRangeSize, &medianValue); |
---|
| 1837 | float max = min+valueRangeSize; |
---|
| 1838 | double realPrecision = 0; |
---|
| 1839 | |
---|
| 1840 | if(confparams_cpr->errorBoundMode==PSNR) |
---|
| 1841 | { |
---|
| 1842 | confparams_cpr->errorBoundMode = ABS; |
---|
| 1843 | realPrecision = confparams_cpr->absErrBound = computeABSErrBoundFromPSNR(confparams_cpr->psnr, (double)confparams_cpr->predThreshold, (double)valueRangeSize); |
---|
| 1844 | //printf("realPrecision=%lf\n", realPrecision); |
---|
| 1845 | } |
---|
| 1846 | else |
---|
| 1847 | realPrecision = getRealPrecision_float(valueRangeSize, errBoundMode, absErr_Bound, relBoundRatio, &status); |
---|
| 1848 | |
---|
| 1849 | if(valueRangeSize <= realPrecision) |
---|
| 1850 | { |
---|
| 1851 | SZ_compress_args_float_withinRange(newByteData, oriData, dataLength, outSize); |
---|
| 1852 | } |
---|
| 1853 | else |
---|
| 1854 | { |
---|
| 1855 | size_t tmpOutSize = 0; |
---|
| 1856 | unsigned char* tmpByteData; |
---|
| 1857 | |
---|
| 1858 | if (r2==0) |
---|
| 1859 | { |
---|
| 1860 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
| 1861 | { |
---|
[9ee2ce3] | 1862 | SZ_compress_args_float_NoCkRngeNoGzip_1D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r1, &tmpOutSize, min, max); |
---|
| 1863 | //SZ_compress_args_float_NoCkRngeNoGzip_1D_pwrgroup(&tmpByteData, oriData, r1, absErr_Bound, relBoundRatio, pwRelBoundRatio, valueRangeSize, medianValue, &tmpOutSize); |
---|
[2c47b73] | 1864 | } |
---|
| 1865 | else |
---|
| 1866 | #ifdef HAVE_TIMECMPR |
---|
| 1867 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1868 | multisteps->compressionType = SZ_compress_args_float_NoCkRngeNoGzip_1D(&tmpByteData, oriData, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1869 | else |
---|
| 1870 | #endif |
---|
| 1871 | SZ_compress_args_float_NoCkRngeNoGzip_1D(&tmpByteData, oriData, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1872 | } |
---|
| 1873 | else |
---|
| 1874 | if (r3==0) |
---|
| 1875 | { |
---|
| 1876 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
[9ee2ce3] | 1877 | SZ_compress_args_float_NoCkRngeNoGzip_2D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r2, r1, &tmpOutSize, min, max); |
---|
[2c47b73] | 1878 | else |
---|
| 1879 | #ifdef HAVE_TIMECMPR |
---|
| 1880 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1881 | multisteps->compressionType = SZ_compress_args_float_NoCkRngeNoGzip_2D(&tmpByteData, oriData, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1882 | else |
---|
| 1883 | #endif |
---|
[9ee2ce3] | 1884 | { |
---|
| 1885 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
| 1886 | SZ_compress_args_float_NoCkRngeNoGzip_2D(&tmpByteData, oriData, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1887 | else |
---|
| 1888 | tmpByteData = SZ_compress_float_2D_MDQ_nonblocked_with_blocked_regression(oriData, r2, r1, realPrecision, &tmpOutSize); |
---|
| 1889 | } |
---|
[2c47b73] | 1890 | } |
---|
| 1891 | else |
---|
| 1892 | if (r4==0) |
---|
| 1893 | { |
---|
| 1894 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
[9ee2ce3] | 1895 | SZ_compress_args_float_NoCkRngeNoGzip_3D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r3, r2, r1, &tmpOutSize, min, max); |
---|
[2c47b73] | 1896 | else |
---|
| 1897 | #ifdef HAVE_TIMECMPR |
---|
| 1898 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
[9ee2ce3] | 1899 | multisteps->compressionType = SZ_compress_args_float_NoCkRngeNoGzip_3D(&tmpByteData, oriData, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
[2c47b73] | 1900 | else |
---|
| 1901 | #endif |
---|
[9ee2ce3] | 1902 | { |
---|
| 1903 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
| 1904 | SZ_compress_args_float_NoCkRngeNoGzip_3D(&tmpByteData, oriData, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1905 | else |
---|
| 1906 | tmpByteData = SZ_compress_float_3D_MDQ_nonblocked_with_blocked_regression(oriData, r3, r2, r1, realPrecision, &tmpOutSize); |
---|
| 1907 | } |
---|
[2c47b73] | 1908 | } |
---|
| 1909 | else |
---|
| 1910 | if (r5==0) |
---|
| 1911 | { |
---|
| 1912 | if(confparams_cpr->errorBoundMode>=PW_REL) |
---|
[9ee2ce3] | 1913 | SZ_compress_args_float_NoCkRngeNoGzip_3D_pwr_pre_log(&tmpByteData, oriData, pwRelBoundRatio, r4*r3, r2, r1, &tmpOutSize, min, max); |
---|
[2c47b73] | 1914 | //ToDO |
---|
| 1915 | //SZ_compress_args_float_NoCkRngeNoGzip_4D_pwr(&tmpByteData, oriData, r4, r3, r2, r1, &tmpOutSize, min, max); |
---|
| 1916 | else |
---|
| 1917 | #ifdef HAVE_TIMECMPR |
---|
| 1918 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 1919 | multisteps->compressionType = SZ_compress_args_float_NoCkRngeNoGzip_4D(&tmpByteData, oriData, r4, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1920 | else |
---|
| 1921 | #endif |
---|
[9ee2ce3] | 1922 | { |
---|
| 1923 | if(sz_with_regression == SZ_NO_REGRESSION) |
---|
| 1924 | SZ_compress_args_float_NoCkRngeNoGzip_4D(&tmpByteData, oriData, r4, r3, r2, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue); |
---|
| 1925 | else |
---|
| 1926 | tmpByteData = SZ_compress_float_3D_MDQ_nonblocked_with_blocked_regression(oriData, r4*r3, r2, r1, realPrecision, &tmpOutSize); |
---|
| 1927 | } |
---|
[2c47b73] | 1928 | } |
---|
| 1929 | else |
---|
| 1930 | { |
---|
| 1931 | printf("Error: doesn't support 5 dimensions for now.\n"); |
---|
| 1932 | status = SZ_DERR; //dimension error |
---|
| 1933 | } |
---|
| 1934 | //Call Gzip to do the further compression. |
---|
| 1935 | if(confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
| 1936 | { |
---|
| 1937 | *outSize = tmpOutSize; |
---|
| 1938 | *newByteData = tmpByteData; |
---|
| 1939 | } |
---|
| 1940 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION || confparams_cpr->szMode==SZ_TEMPORAL_COMPRESSION) |
---|
| 1941 | { |
---|
[9ee2ce3] | 1942 | *outSize = sz_lossless_compress(confparams_cpr->losslessCompressor, confparams_cpr->gzipMode, tmpByteData, tmpOutSize, newByteData); |
---|
[2c47b73] | 1943 | free(tmpByteData); |
---|
| 1944 | } |
---|
| 1945 | else |
---|
| 1946 | { |
---|
| 1947 | printf("Error: Wrong setting of confparams_cpr->szMode in the float compression.\n"); |
---|
| 1948 | status = SZ_MERR; //mode error |
---|
| 1949 | } |
---|
| 1950 | } |
---|
| 1951 | |
---|
| 1952 | return status; |
---|
| 1953 | } |
---|
| 1954 | |
---|
| 1955 | |
---|
| 1956 | void computeReqLength_float(double realPrecision, short radExpo, int* reqLength, float* medianValue) |
---|
| 1957 | { |
---|
| 1958 | short reqExpo = getPrecisionReqLength_double(realPrecision); |
---|
| 1959 | *reqLength = 9+radExpo - reqExpo; //radExpo-reqExpo == reqMantiLength |
---|
| 1960 | if(*reqLength<9) |
---|
| 1961 | *reqLength = 9; |
---|
| 1962 | if(*reqLength>32) |
---|
| 1963 | { |
---|
| 1964 | *reqLength = 32; |
---|
| 1965 | *medianValue = 0; |
---|
| 1966 | } |
---|
| 1967 | } |
---|
| 1968 | |
---|
| 1969 | //TODO |
---|
| 1970 | int SZ_compress_args_float_subblock(unsigned char* compressedBytes, float *oriData, |
---|
| 1971 | size_t r5, size_t r4, size_t r3, size_t r2, size_t r1, |
---|
| 1972 | size_t s5, size_t s4, size_t s3, size_t s2, size_t s1, |
---|
| 1973 | size_t e5, size_t e4, size_t e3, size_t e2, size_t e1, |
---|
| 1974 | size_t *outSize, int errBoundMode, double absErr_Bound, double relBoundRatio) |
---|
| 1975 | { |
---|
| 1976 | int status = SZ_SCES; |
---|
| 1977 | float valueRangeSize = 0, medianValue = 0; |
---|
| 1978 | computeRangeSize_float_subblock(oriData, &valueRangeSize, &medianValue, r5, r4, r3, r2, r1, s5, s4, s3, s2, s1, e5, e4, e3, e2, e1); |
---|
| 1979 | |
---|
| 1980 | double realPrecision = getRealPrecision_float(valueRangeSize, errBoundMode, absErr_Bound, relBoundRatio, &status); |
---|
| 1981 | |
---|
| 1982 | if(valueRangeSize <= realPrecision) |
---|
| 1983 | { |
---|
| 1984 | //TODO |
---|
| 1985 | //SZ_compress_args_float_withinRange_subblock(); |
---|
| 1986 | } |
---|
| 1987 | else |
---|
| 1988 | { |
---|
| 1989 | if (r2==0) |
---|
| 1990 | { |
---|
| 1991 | if(errBoundMode>=PW_REL) |
---|
| 1992 | { |
---|
| 1993 | //TODO |
---|
| 1994 | //SZ_compress_args_float_NoCkRngeNoGzip_1D_pwr_subblock(); |
---|
| 1995 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
| 1996 | } |
---|
| 1997 | else |
---|
| 1998 | SZ_compress_args_float_NoCkRnge_1D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r1, s1, e1); |
---|
| 1999 | } |
---|
| 2000 | else |
---|
| 2001 | if (r3==0) |
---|
| 2002 | { |
---|
| 2003 | //TODO |
---|
| 2004 | if(errBoundMode>=PW_REL) |
---|
| 2005 | { |
---|
| 2006 | //TODO |
---|
| 2007 | //SZ_compress_args_float_NoCkRngeNoGzip_2D_pwr_subblock(); |
---|
| 2008 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
| 2009 | } |
---|
| 2010 | else |
---|
| 2011 | SZ_compress_args_float_NoCkRnge_2D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r2, r1, s2, s1, e2, e1); |
---|
| 2012 | } |
---|
| 2013 | else |
---|
| 2014 | if (r4==0) |
---|
| 2015 | { |
---|
| 2016 | if(errBoundMode>=PW_REL) |
---|
| 2017 | { |
---|
| 2018 | //TODO |
---|
| 2019 | //SZ_compress_args_float_NoCkRngeNoGzip_3D_pwr_subblock(); |
---|
| 2020 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
| 2021 | } |
---|
| 2022 | else |
---|
| 2023 | SZ_compress_args_float_NoCkRnge_3D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r3, r2, r1, s3, s2, s1, e3, e2, e1); |
---|
| 2024 | } |
---|
| 2025 | else |
---|
| 2026 | if (r5==0) |
---|
| 2027 | { |
---|
| 2028 | if(errBoundMode>=PW_REL) |
---|
| 2029 | { |
---|
| 2030 | //TODO |
---|
| 2031 | //SZ_compress_args_float_NoCkRngeNoGzip_4D_pwr_subblock(); |
---|
| 2032 | printf ("Current subblock version does not support point-wise relative error bound.\n"); |
---|
| 2033 | } |
---|
| 2034 | else |
---|
| 2035 | SZ_compress_args_float_NoCkRnge_4D_subblock(compressedBytes, oriData, realPrecision, outSize, valueRangeSize, medianValue, r4, r3, r2, r1, s4, s3, s2, s1, e4, e3, e2, e1); |
---|
| 2036 | } |
---|
| 2037 | else |
---|
| 2038 | { |
---|
| 2039 | printf("Error: doesn't support 5 dimensions for now.\n"); |
---|
| 2040 | status = SZ_DERR; //dimension error |
---|
| 2041 | } |
---|
| 2042 | } |
---|
| 2043 | return status; |
---|
| 2044 | } |
---|
| 2045 | |
---|
| 2046 | void SZ_compress_args_float_NoCkRnge_1D_subblock(unsigned char* compressedBytes, float *oriData, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f, |
---|
| 2047 | size_t r1, size_t s1, size_t e1) |
---|
| 2048 | { |
---|
| 2049 | TightDataPointStorageF* tdps = SZ_compress_float_1D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_f, r1, s1, e1); |
---|
| 2050 | |
---|
| 2051 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
| 2052 | convertTDPStoFlatBytes_float_args(tdps, compressedBytes, outSize); |
---|
| 2053 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
| 2054 | { |
---|
| 2055 | unsigned char *tmpCompBytes; |
---|
| 2056 | size_t tmpOutSize; |
---|
| 2057 | convertTDPStoFlatBytes_float(tdps, &tmpCompBytes, &tmpOutSize); |
---|
| 2058 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
| 2059 | free(tmpCompBytes); |
---|
| 2060 | } |
---|
| 2061 | else |
---|
| 2062 | { |
---|
| 2063 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
| 2064 | } |
---|
| 2065 | |
---|
| 2066 | //TODO |
---|
| 2067 | // if(*outSize>dataLength*sizeof(float)) |
---|
| 2068 | // SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 2069 | |
---|
| 2070 | free_TightDataPointStorageF(tdps); |
---|
| 2071 | } |
---|
| 2072 | |
---|
| 2073 | void SZ_compress_args_float_NoCkRnge_2D_subblock(unsigned char* compressedBytes, float *oriData, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f, |
---|
| 2074 | size_t r2, size_t r1, size_t s2, size_t s1, size_t e2, size_t e1) |
---|
| 2075 | { |
---|
| 2076 | TightDataPointStorageF* tdps = SZ_compress_float_2D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_f, r2, r1, s2, s1, e2, e1); |
---|
| 2077 | |
---|
| 2078 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
| 2079 | convertTDPStoFlatBytes_float_args(tdps, compressedBytes, outSize); |
---|
| 2080 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
| 2081 | { |
---|
| 2082 | unsigned char *tmpCompBytes; |
---|
| 2083 | size_t tmpOutSize; |
---|
| 2084 | convertTDPStoFlatBytes_float(tdps, &tmpCompBytes, &tmpOutSize); |
---|
| 2085 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
| 2086 | free(tmpCompBytes); |
---|
| 2087 | } |
---|
| 2088 | else |
---|
| 2089 | { |
---|
| 2090 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
| 2091 | } |
---|
| 2092 | |
---|
| 2093 | //TODO |
---|
| 2094 | // if(*outSize>dataLength*sizeof(float)) |
---|
| 2095 | // SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 2096 | |
---|
| 2097 | free_TightDataPointStorageF(tdps); |
---|
| 2098 | } |
---|
| 2099 | |
---|
| 2100 | void SZ_compress_args_float_NoCkRnge_3D_subblock(unsigned char* compressedBytes, float *oriData, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f, |
---|
| 2101 | size_t r3, size_t r2, size_t r1, size_t s3, size_t s2, size_t s1, size_t e3, size_t e2, size_t e1) |
---|
| 2102 | { |
---|
| 2103 | TightDataPointStorageF* tdps = SZ_compress_float_3D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_f, r3, r2, r1, s3, s2, s1, e3, e2, e1); |
---|
| 2104 | |
---|
| 2105 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
| 2106 | convertTDPStoFlatBytes_float_args(tdps, compressedBytes, outSize); |
---|
| 2107 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
| 2108 | { |
---|
| 2109 | unsigned char *tmpCompBytes; |
---|
| 2110 | size_t tmpOutSize; |
---|
| 2111 | convertTDPStoFlatBytes_float(tdps, &tmpCompBytes, &tmpOutSize); |
---|
| 2112 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
| 2113 | free(tmpCompBytes); |
---|
| 2114 | } |
---|
| 2115 | else |
---|
| 2116 | { |
---|
| 2117 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
| 2118 | } |
---|
| 2119 | |
---|
| 2120 | //TODO |
---|
| 2121 | // if(*outSize>dataLength*sizeof(float)) |
---|
| 2122 | // SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 2123 | |
---|
| 2124 | free_TightDataPointStorageF(tdps); |
---|
| 2125 | } |
---|
| 2126 | |
---|
| 2127 | void SZ_compress_args_float_NoCkRnge_4D_subblock(unsigned char* compressedBytes, float *oriData, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f, |
---|
| 2128 | size_t r4, size_t r3, size_t r2, size_t r1, size_t s4, size_t s3, size_t s2, size_t s1, size_t e4, size_t e3, size_t e2, size_t e1) |
---|
| 2129 | { |
---|
| 2130 | TightDataPointStorageF* tdps = SZ_compress_float_4D_MDQ_subblock(oriData, realPrecision, valueRangeSize, medianValue_f, r4, r3, r2, r1, s4, s3, s2, s1, e4, e3, e2, e1); |
---|
| 2131 | |
---|
| 2132 | if (confparams_cpr->szMode==SZ_BEST_SPEED) |
---|
| 2133 | convertTDPStoFlatBytes_float_args(tdps, compressedBytes, outSize); |
---|
| 2134 | else if(confparams_cpr->szMode==SZ_BEST_COMPRESSION || confparams_cpr->szMode==SZ_DEFAULT_COMPRESSION) |
---|
| 2135 | { |
---|
| 2136 | unsigned char *tmpCompBytes; |
---|
| 2137 | size_t tmpOutSize; |
---|
| 2138 | convertTDPStoFlatBytes_float(tdps, &tmpCompBytes, &tmpOutSize); |
---|
| 2139 | *outSize = zlib_compress3(tmpCompBytes, tmpOutSize, compressedBytes, confparams_cpr->gzipMode); |
---|
| 2140 | free(tmpCompBytes); |
---|
| 2141 | } |
---|
| 2142 | else |
---|
| 2143 | { |
---|
| 2144 | printf ("Error: Wrong setting of confparams_cpr->szMode in the double compression.\n"); |
---|
| 2145 | } |
---|
| 2146 | |
---|
| 2147 | //TODO |
---|
| 2148 | // if(*outSize>dataLength*sizeof(float)) |
---|
| 2149 | // SZ_compress_args_float_StoreOriData(oriData, dataLength, tdps, newByteData, outSize); |
---|
| 2150 | |
---|
| 2151 | free_TightDataPointStorageF(tdps); |
---|
| 2152 | |
---|
| 2153 | } |
---|
| 2154 | |
---|
| 2155 | unsigned int optimize_intervals_float_1D_subblock(float *oriData, double realPrecision, size_t r1, size_t s1, size_t e1) |
---|
| 2156 | { |
---|
| 2157 | size_t dataLength = e1 - s1 + 1; |
---|
| 2158 | oriData = oriData + s1; |
---|
| 2159 | |
---|
| 2160 | size_t i = 0; |
---|
| 2161 | unsigned long radiusIndex; |
---|
| 2162 | float pred_value = 0, pred_err; |
---|
| 2163 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 2164 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 2165 | size_t totalSampleSize = dataLength/confparams_cpr->sampleDistance; |
---|
| 2166 | for(i=2;i<dataLength;i++) |
---|
| 2167 | { |
---|
| 2168 | if(i%confparams_cpr->sampleDistance==0) |
---|
| 2169 | { |
---|
| 2170 | pred_value = 2*oriData[i-1] - oriData[i-2]; |
---|
| 2171 | //pred_value = oriData[i-1]; |
---|
| 2172 | pred_err = fabs(pred_value - oriData[i]); |
---|
| 2173 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 2174 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 2175 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 2176 | intervals[radiusIndex]++; |
---|
| 2177 | } |
---|
| 2178 | } |
---|
| 2179 | //compute the appropriate number |
---|
| 2180 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 2181 | size_t sum = 0; |
---|
| 2182 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 2183 | { |
---|
| 2184 | sum += intervals[i]; |
---|
| 2185 | if(sum>targetCount) |
---|
| 2186 | break; |
---|
| 2187 | } |
---|
| 2188 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 2189 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 2190 | |
---|
| 2191 | unsigned int accIntervals = 2*(i+1); |
---|
| 2192 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 2193 | |
---|
| 2194 | if(powerOf2<32) |
---|
| 2195 | powerOf2 = 32; |
---|
| 2196 | |
---|
| 2197 | free(intervals); |
---|
| 2198 | //printf("accIntervals=%d, powerOf2=%d\n", accIntervals, powerOf2); |
---|
| 2199 | return powerOf2; |
---|
| 2200 | } |
---|
| 2201 | |
---|
| 2202 | unsigned int optimize_intervals_float_2D_subblock(float *oriData, double realPrecision, size_t r1, size_t r2, size_t s1, size_t s2, size_t e1, size_t e2) |
---|
| 2203 | { |
---|
| 2204 | size_t R1 = e1 - s1 + 1; |
---|
| 2205 | size_t R2 = e2 - s2 + 1; |
---|
| 2206 | |
---|
| 2207 | size_t i,j, index; |
---|
| 2208 | unsigned long radiusIndex; |
---|
| 2209 | float pred_value = 0, pred_err; |
---|
| 2210 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 2211 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 2212 | size_t totalSampleSize = R1*R2/confparams_cpr->sampleDistance; |
---|
| 2213 | for(i=s1+1;i<=e1;i++) |
---|
| 2214 | { |
---|
| 2215 | for(j=s2+1;j<=e2;j++) |
---|
| 2216 | { |
---|
| 2217 | if((i+j)%confparams_cpr->sampleDistance==0) |
---|
| 2218 | { |
---|
| 2219 | index = i*r2+j; |
---|
| 2220 | pred_value = oriData[index-1] + oriData[index-r2] - oriData[index-r2-1]; |
---|
| 2221 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 2222 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 2223 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 2224 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 2225 | intervals[radiusIndex]++; |
---|
| 2226 | } |
---|
| 2227 | } |
---|
| 2228 | } |
---|
| 2229 | //compute the appropriate number |
---|
| 2230 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 2231 | size_t sum = 0; |
---|
| 2232 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 2233 | { |
---|
| 2234 | sum += intervals[i]; |
---|
| 2235 | if(sum>targetCount) |
---|
| 2236 | break; |
---|
| 2237 | } |
---|
| 2238 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 2239 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 2240 | unsigned int accIntervals = 2*(i+1); |
---|
| 2241 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 2242 | |
---|
| 2243 | if(powerOf2<32) |
---|
| 2244 | powerOf2 = 32; |
---|
| 2245 | |
---|
| 2246 | free(intervals); |
---|
| 2247 | //printf("confparams_cpr->maxRangeRadius = %d, accIntervals=%d, powerOf2=%d\n", confparams_cpr->maxRangeRadius, accIntervals, powerOf2); |
---|
| 2248 | return powerOf2; |
---|
| 2249 | } |
---|
| 2250 | |
---|
| 2251 | unsigned int optimize_intervals_float_3D_subblock(float *oriData, double realPrecision, size_t r1, size_t r2, size_t r3, size_t s1, size_t s2, size_t s3, size_t e1, size_t e2, size_t e3) |
---|
| 2252 | { |
---|
| 2253 | size_t R1 = e1 - s1 + 1; |
---|
| 2254 | size_t R2 = e2 - s2 + 1; |
---|
| 2255 | size_t R3 = e3 - s3 + 1; |
---|
| 2256 | |
---|
| 2257 | size_t r23 = r2*r3; |
---|
| 2258 | |
---|
| 2259 | size_t i,j,k, index; |
---|
| 2260 | unsigned long radiusIndex; |
---|
| 2261 | float pred_value = 0, pred_err; |
---|
| 2262 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 2263 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 2264 | size_t totalSampleSize = R1*R2*R3/confparams_cpr->sampleDistance; |
---|
| 2265 | for(i=s1+1;i<=e1;i++) |
---|
| 2266 | { |
---|
| 2267 | for(j=s2+1;j<=e2;j++) |
---|
| 2268 | { |
---|
| 2269 | for(k=s3+1;k<=e3;k++) |
---|
| 2270 | { |
---|
| 2271 | if((i+j+k)%confparams_cpr->sampleDistance==0) |
---|
| 2272 | { |
---|
| 2273 | index = i*r23+j*r3+k; |
---|
| 2274 | pred_value = oriData[index-1] + oriData[index-r3] + oriData[index-r23] |
---|
| 2275 | - oriData[index-1-r23] - oriData[index-r3-1] - oriData[index-r3-r23] + oriData[index-r3-r23-1]; |
---|
| 2276 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 2277 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 2278 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 2279 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 2280 | intervals[radiusIndex]++; |
---|
| 2281 | } |
---|
| 2282 | } |
---|
| 2283 | } |
---|
| 2284 | } |
---|
| 2285 | //compute the appropriate number |
---|
| 2286 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 2287 | size_t sum = 0; |
---|
| 2288 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 2289 | { |
---|
| 2290 | sum += intervals[i]; |
---|
| 2291 | if(sum>targetCount) |
---|
| 2292 | break; |
---|
| 2293 | } |
---|
| 2294 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 2295 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 2296 | unsigned int accIntervals = 2*(i+1); |
---|
| 2297 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 2298 | |
---|
| 2299 | if(powerOf2<32) |
---|
| 2300 | powerOf2 = 32; |
---|
| 2301 | |
---|
| 2302 | free(intervals); |
---|
| 2303 | return powerOf2; |
---|
| 2304 | } |
---|
| 2305 | |
---|
| 2306 | unsigned int optimize_intervals_float_4D_subblock(float *oriData, double realPrecision, |
---|
| 2307 | size_t r1, size_t r2, size_t r3, size_t r4, size_t s1, size_t s2, size_t s3, size_t s4, size_t e1, size_t e2, size_t e3, size_t e4) |
---|
| 2308 | { |
---|
| 2309 | size_t R1 = e1 - s1 + 1; |
---|
| 2310 | size_t R2 = e2 - s2 + 1; |
---|
| 2311 | size_t R3 = e3 - s3 + 1; |
---|
| 2312 | size_t R4 = e4 - s4 + 1; |
---|
| 2313 | |
---|
| 2314 | size_t r34 = r3*r4; |
---|
| 2315 | size_t r234 = r2*r3*r4; |
---|
| 2316 | |
---|
| 2317 | size_t i,j,k,l, index; |
---|
| 2318 | unsigned long radiusIndex; |
---|
| 2319 | float pred_value = 0, pred_err; |
---|
| 2320 | int *intervals = (int*)malloc(confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 2321 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(int)); |
---|
| 2322 | size_t totalSampleSize = R1*R2*R3*R4/confparams_cpr->sampleDistance; |
---|
| 2323 | for(i=s1+1;i<=e1;i++) |
---|
| 2324 | { |
---|
| 2325 | for(j=s2+1;j<=e2;j++) |
---|
| 2326 | { |
---|
| 2327 | for(k=s3+1;k<=e3;k++) |
---|
| 2328 | { |
---|
| 2329 | for (l=s4+1;l<=e4;l++) |
---|
| 2330 | { |
---|
| 2331 | if((i+j+k+l)%confparams_cpr->sampleDistance==0) |
---|
| 2332 | { |
---|
| 2333 | index = i*r234+j*r34+k*r4+l; |
---|
| 2334 | pred_value = oriData[index-1] + oriData[index-r4] + oriData[index-r34] |
---|
| 2335 | - oriData[index-1-r34] - oriData[index-r4-1] - oriData[index-r4-r34] + oriData[index-r4-r34-1]; |
---|
| 2336 | pred_err = fabs(pred_value - oriData[index]); |
---|
| 2337 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 2338 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 2339 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 2340 | intervals[radiusIndex]++; |
---|
| 2341 | } |
---|
| 2342 | } |
---|
| 2343 | } |
---|
| 2344 | } |
---|
| 2345 | } |
---|
| 2346 | //compute the appropriate number |
---|
| 2347 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 2348 | size_t sum = 0; |
---|
| 2349 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 2350 | { |
---|
| 2351 | sum += intervals[i]; |
---|
| 2352 | if(sum>targetCount) |
---|
| 2353 | break; |
---|
| 2354 | } |
---|
| 2355 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 2356 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 2357 | |
---|
| 2358 | unsigned int accIntervals = 2*(i+1); |
---|
| 2359 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 2360 | |
---|
| 2361 | if(powerOf2<32) |
---|
| 2362 | powerOf2 = 32; |
---|
| 2363 | |
---|
| 2364 | free(intervals); |
---|
| 2365 | return powerOf2; |
---|
| 2366 | } |
---|
| 2367 | |
---|
| 2368 | TightDataPointStorageF* SZ_compress_float_1D_MDQ_subblock(float *oriData, double realPrecision, float valueRangeSize, float medianValue_f, |
---|
| 2369 | size_t r1, size_t s1, size_t e1) |
---|
| 2370 | { |
---|
| 2371 | size_t dataLength = e1 - s1 + 1; |
---|
| 2372 | unsigned int quantization_intervals; |
---|
| 2373 | if(exe_params->optQuantMode==1) |
---|
| 2374 | quantization_intervals = optimize_intervals_float_1D_subblock(oriData, realPrecision, r1, s1, e1); |
---|
| 2375 | else |
---|
| 2376 | quantization_intervals = exe_params->intvCapacity; |
---|
| 2377 | updateQuantizationInfo(quantization_intervals); |
---|
| 2378 | |
---|
| 2379 | size_t i; |
---|
| 2380 | int reqLength; |
---|
| 2381 | float medianValue = medianValue_f; |
---|
| 2382 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
| 2383 | |
---|
| 2384 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 2385 | |
---|
| 2386 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 2387 | |
---|
| 2388 | float* spaceFillingValue = oriData + s1; |
---|
| 2389 | |
---|
| 2390 | DynamicIntArray *exactLeadNumArray; |
---|
| 2391 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 2392 | |
---|
| 2393 | DynamicByteArray *exactMidByteArray; |
---|
| 2394 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 2395 | |
---|
| 2396 | DynamicIntArray *resiBitArray; |
---|
| 2397 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 2398 | |
---|
| 2399 | type[0] = 0; |
---|
| 2400 | |
---|
| 2401 | unsigned char preDataBytes[4]; |
---|
| 2402 | intToBytes_bigEndian(preDataBytes, 0); |
---|
| 2403 | |
---|
| 2404 | int reqBytesLength = reqLength/8; |
---|
| 2405 | int resiBitsLength = reqLength%8; |
---|
| 2406 | float last3CmprsData[3] = {0}; |
---|
| 2407 | |
---|
| 2408 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
| 2409 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 2410 | |
---|
| 2411 | //add the first data |
---|
| 2412 | compressSingleFloatValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2413 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2414 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2415 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2416 | listAdd_float(last3CmprsData, vce->data); |
---|
| 2417 | |
---|
| 2418 | //add the second data |
---|
| 2419 | type[1] = 0; |
---|
| 2420 | compressSingleFloatValue(vce, spaceFillingValue[1], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2421 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2422 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2423 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2424 | listAdd_float(last3CmprsData, vce->data); |
---|
| 2425 | |
---|
| 2426 | int state; |
---|
| 2427 | double checkRadius; |
---|
| 2428 | float curData; |
---|
| 2429 | float pred; |
---|
| 2430 | float predAbsErr; |
---|
| 2431 | checkRadius = (exe_params->intvCapacity-1)*realPrecision; |
---|
| 2432 | double interval = 2*realPrecision; |
---|
| 2433 | |
---|
| 2434 | for(i=2;i<dataLength;i++) |
---|
| 2435 | { |
---|
| 2436 | curData = spaceFillingValue[i]; |
---|
| 2437 | pred = 2*last3CmprsData[0] - last3CmprsData[1]; |
---|
| 2438 | predAbsErr = fabs(curData - pred); |
---|
| 2439 | if(predAbsErr<=checkRadius) |
---|
| 2440 | { |
---|
| 2441 | state = (predAbsErr/realPrecision+1)/2; |
---|
| 2442 | if(curData>=pred) |
---|
| 2443 | { |
---|
| 2444 | type[i] = exe_params->intvRadius+state; |
---|
| 2445 | pred = pred + state*interval; |
---|
| 2446 | } |
---|
| 2447 | else |
---|
| 2448 | { |
---|
| 2449 | type[i] = exe_params->intvRadius-state; |
---|
| 2450 | pred = pred - state*interval; |
---|
| 2451 | } |
---|
| 2452 | |
---|
| 2453 | listAdd_float(last3CmprsData, pred); |
---|
| 2454 | continue; |
---|
| 2455 | } |
---|
| 2456 | |
---|
| 2457 | //unpredictable data processing |
---|
| 2458 | type[i] = 0; |
---|
| 2459 | compressSingleFloatValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2460 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2461 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2462 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2463 | |
---|
| 2464 | listAdd_float(last3CmprsData, vce->data); |
---|
| 2465 | } |
---|
| 2466 | |
---|
| 2467 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 2468 | |
---|
| 2469 | TightDataPointStorageF* tdps; |
---|
| 2470 | |
---|
| 2471 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
| 2472 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 2473 | exactLeadNumArray->array, |
---|
| 2474 | resiBitArray->array, resiBitArray->size, |
---|
| 2475 | resiBitsLength, |
---|
| 2476 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 2477 | |
---|
| 2478 | //free memory |
---|
| 2479 | free_DIA(exactLeadNumArray); |
---|
| 2480 | free_DIA(resiBitArray); |
---|
| 2481 | free(type); |
---|
| 2482 | free(vce); |
---|
| 2483 | free(lce); |
---|
| 2484 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 2485 | |
---|
| 2486 | return tdps; |
---|
| 2487 | } |
---|
| 2488 | |
---|
| 2489 | TightDataPointStorageF* SZ_compress_float_2D_MDQ_subblock(float *oriData, double realPrecision, float valueRangeSize, float medianValue_f, |
---|
| 2490 | size_t r1, size_t r2, size_t s1, size_t s2, size_t e1, size_t e2) |
---|
| 2491 | { |
---|
| 2492 | unsigned int quantization_intervals; |
---|
| 2493 | if(exe_params->optQuantMode==1) |
---|
| 2494 | { |
---|
| 2495 | quantization_intervals = optimize_intervals_float_2D_subblock(oriData, realPrecision, r1, r2, s1, s2, e1, e2); |
---|
| 2496 | updateQuantizationInfo(quantization_intervals); |
---|
| 2497 | } |
---|
| 2498 | else |
---|
| 2499 | quantization_intervals = exe_params->intvCapacity; |
---|
| 2500 | |
---|
| 2501 | size_t i,j; |
---|
| 2502 | int reqLength; |
---|
| 2503 | float pred1D, pred2D; |
---|
| 2504 | float diff = 0.0; |
---|
| 2505 | double itvNum = 0; |
---|
| 2506 | float *P0, *P1; |
---|
| 2507 | |
---|
| 2508 | size_t R1 = e1 - s1 + 1; |
---|
| 2509 | size_t R2 = e2 - s2 + 1; |
---|
| 2510 | size_t dataLength = R1*R2; |
---|
| 2511 | |
---|
| 2512 | P0 = (float*)malloc(R2*sizeof(float)); |
---|
| 2513 | memset(P0, 0, R2*sizeof(float)); |
---|
| 2514 | P1 = (float*)malloc(R2*sizeof(float)); |
---|
| 2515 | memset(P1, 0, R2*sizeof(float)); |
---|
| 2516 | |
---|
| 2517 | float medianValue = medianValue_f; |
---|
| 2518 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
| 2519 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 2520 | |
---|
| 2521 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 2522 | |
---|
| 2523 | float* spaceFillingValue = oriData; // |
---|
| 2524 | |
---|
| 2525 | DynamicIntArray *exactLeadNumArray; |
---|
| 2526 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 2527 | |
---|
| 2528 | DynamicByteArray *exactMidByteArray; |
---|
| 2529 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 2530 | |
---|
| 2531 | DynamicIntArray *resiBitArray; |
---|
| 2532 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 2533 | |
---|
| 2534 | unsigned char preDataBytes[4]; |
---|
| 2535 | intToBytes_bigEndian(preDataBytes, 0); |
---|
| 2536 | |
---|
| 2537 | int reqBytesLength = reqLength/8; |
---|
| 2538 | int resiBitsLength = reqLength%8; |
---|
| 2539 | |
---|
| 2540 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
| 2541 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 2542 | |
---|
| 2543 | /* Process Row-s1 data s2*/ |
---|
| 2544 | size_t gIndex; |
---|
| 2545 | size_t lIndex; |
---|
| 2546 | |
---|
| 2547 | gIndex = s1*r2+s2; |
---|
| 2548 | lIndex = 0; |
---|
| 2549 | |
---|
| 2550 | type[lIndex] = 0; |
---|
| 2551 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2552 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2553 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2554 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2555 | P1[0] = vce->data; |
---|
| 2556 | |
---|
| 2557 | /* Process Row-s1 data s2+1*/ |
---|
| 2558 | gIndex = s1*r2+(s2+1); |
---|
| 2559 | lIndex = 1; |
---|
| 2560 | |
---|
| 2561 | pred1D = P1[0]; |
---|
| 2562 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2563 | |
---|
| 2564 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2565 | |
---|
| 2566 | if (itvNum < exe_params->intvCapacity) |
---|
| 2567 | { |
---|
| 2568 | if (diff < 0) itvNum = -itvNum; |
---|
| 2569 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2570 | P1[1] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2571 | } |
---|
| 2572 | else |
---|
| 2573 | { |
---|
| 2574 | type[lIndex] = 0; |
---|
| 2575 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2576 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2577 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2578 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2579 | P1[1] = vce->data; |
---|
| 2580 | } |
---|
| 2581 | |
---|
| 2582 | /* Process Row-s1 data s2+2 --> data e2 */ |
---|
| 2583 | for (j = 2; j < R2; j++) |
---|
| 2584 | { |
---|
| 2585 | gIndex = s1*r2+(s2+j); |
---|
| 2586 | lIndex = j; |
---|
| 2587 | |
---|
| 2588 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
| 2589 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2590 | |
---|
| 2591 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2592 | |
---|
| 2593 | if (itvNum < exe_params->intvCapacity) |
---|
| 2594 | { |
---|
| 2595 | if (diff < 0) itvNum = -itvNum; |
---|
| 2596 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2597 | P1[j] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2598 | } |
---|
| 2599 | else |
---|
| 2600 | { |
---|
| 2601 | type[lIndex] = 0; |
---|
| 2602 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2603 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2604 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2605 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2606 | P1[j] = vce->data; |
---|
| 2607 | } |
---|
| 2608 | } |
---|
| 2609 | |
---|
| 2610 | /* Process Row-s1+1 --> Row-e1 */ |
---|
| 2611 | for (i = 1; i < R1; i++) |
---|
| 2612 | { |
---|
| 2613 | /* Process row-s1+i data s2 */ |
---|
| 2614 | gIndex = (s1+i)*r2+s2; |
---|
| 2615 | lIndex = i*R2; |
---|
| 2616 | |
---|
| 2617 | pred1D = P1[0]; |
---|
| 2618 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2619 | |
---|
| 2620 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2621 | |
---|
| 2622 | if (itvNum < exe_params->intvCapacity) |
---|
| 2623 | { |
---|
| 2624 | if (diff < 0) itvNum = -itvNum; |
---|
| 2625 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2626 | P0[0] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2627 | } |
---|
| 2628 | else |
---|
| 2629 | { |
---|
| 2630 | type[lIndex] = 0; |
---|
| 2631 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2632 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2633 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2634 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2635 | P0[0] = vce->data; |
---|
| 2636 | } |
---|
| 2637 | |
---|
| 2638 | /* Process row-s1+i data s2+1 --> e2 */ |
---|
| 2639 | for (j = 1; j < R2; j++) |
---|
| 2640 | { |
---|
| 2641 | gIndex = (s1+i)*r2+(s2+j); |
---|
| 2642 | lIndex = i*R2+j; |
---|
| 2643 | |
---|
| 2644 | // printf ("global index = %d, local index = %d\n", gIndex, lIndex); |
---|
| 2645 | |
---|
| 2646 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
| 2647 | |
---|
| 2648 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 2649 | |
---|
| 2650 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2651 | |
---|
| 2652 | if (itvNum < exe_params->intvCapacity) |
---|
| 2653 | { |
---|
| 2654 | if (diff < 0) itvNum = -itvNum; |
---|
| 2655 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2656 | P0[j] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2657 | } |
---|
| 2658 | else |
---|
| 2659 | { |
---|
| 2660 | type[lIndex] = 0; |
---|
| 2661 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2662 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2663 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2664 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2665 | P0[j] = vce->data; |
---|
| 2666 | } |
---|
| 2667 | } |
---|
| 2668 | |
---|
| 2669 | float *Pt; |
---|
| 2670 | Pt = P1; |
---|
| 2671 | P1 = P0; |
---|
| 2672 | P0 = Pt; |
---|
| 2673 | } |
---|
| 2674 | |
---|
| 2675 | free(P0); |
---|
| 2676 | free(P1); |
---|
| 2677 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 2678 | |
---|
| 2679 | TightDataPointStorageF* tdps; |
---|
| 2680 | |
---|
| 2681 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
| 2682 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 2683 | exactLeadNumArray->array, |
---|
| 2684 | resiBitArray->array, resiBitArray->size, |
---|
| 2685 | resiBitsLength, |
---|
| 2686 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 2687 | |
---|
| 2688 | //free memory |
---|
| 2689 | free_DIA(exactLeadNumArray); |
---|
| 2690 | free_DIA(resiBitArray); |
---|
| 2691 | free(type); |
---|
| 2692 | free(vce); |
---|
| 2693 | free(lce); |
---|
| 2694 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 2695 | |
---|
| 2696 | return tdps; |
---|
| 2697 | } |
---|
| 2698 | |
---|
| 2699 | TightDataPointStorageF* SZ_compress_float_3D_MDQ_subblock(float *oriData, double realPrecision, float valueRangeSize, float medianValue_f, |
---|
| 2700 | size_t r1, size_t r2, size_t r3, size_t s1, size_t s2, size_t s3, size_t e1, size_t e2, size_t e3) |
---|
| 2701 | { |
---|
| 2702 | unsigned int quantization_intervals; |
---|
| 2703 | if(exe_params->optQuantMode==1) |
---|
| 2704 | { |
---|
| 2705 | quantization_intervals = optimize_intervals_float_3D_subblock(oriData, realPrecision, r1, r2, r3, s1, s2, s3, e1, e2, e3); |
---|
| 2706 | updateQuantizationInfo(quantization_intervals); |
---|
| 2707 | } |
---|
| 2708 | else |
---|
| 2709 | quantization_intervals = exe_params->intvCapacity; |
---|
| 2710 | |
---|
| 2711 | size_t i,j,k; |
---|
| 2712 | int reqLength; |
---|
| 2713 | float pred1D, pred2D, pred3D; |
---|
| 2714 | float diff = 0.0; |
---|
| 2715 | double itvNum = 0; |
---|
| 2716 | float *P0, *P1; |
---|
| 2717 | |
---|
| 2718 | size_t R1 = e1 - s1 + 1; |
---|
| 2719 | size_t R2 = e2 - s2 + 1; |
---|
| 2720 | size_t R3 = e3 - s3 + 1; |
---|
| 2721 | size_t dataLength = R1*R2*R3; |
---|
| 2722 | |
---|
| 2723 | size_t r23 = r2*r3; |
---|
| 2724 | size_t R23 = R2*R3; |
---|
| 2725 | |
---|
| 2726 | P0 = (float*)malloc(R23*sizeof(float)); |
---|
| 2727 | P1 = (float*)malloc(R23*sizeof(float)); |
---|
| 2728 | |
---|
| 2729 | float medianValue = medianValue_f; |
---|
| 2730 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
| 2731 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 2732 | |
---|
| 2733 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 2734 | //type[dataLength]=0; |
---|
| 2735 | |
---|
| 2736 | float* spaceFillingValue = oriData; // |
---|
| 2737 | |
---|
| 2738 | DynamicIntArray *exactLeadNumArray; |
---|
| 2739 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 2740 | |
---|
| 2741 | DynamicByteArray *exactMidByteArray; |
---|
| 2742 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 2743 | |
---|
| 2744 | DynamicIntArray *resiBitArray; |
---|
| 2745 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 2746 | |
---|
| 2747 | unsigned char preDataBytes[4]; |
---|
| 2748 | intToBytes_bigEndian(preDataBytes, 0); |
---|
| 2749 | |
---|
| 2750 | int reqBytesLength = reqLength/8; |
---|
| 2751 | int resiBitsLength = reqLength%8; |
---|
| 2752 | |
---|
| 2753 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
| 2754 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 2755 | |
---|
| 2756 | |
---|
| 2757 | /////////////////////////// Process layer-s1 /////////////////////////// |
---|
| 2758 | /* Process Row-s2 data s3*/ |
---|
| 2759 | size_t gIndex; //global index |
---|
| 2760 | size_t lIndex; //local index |
---|
| 2761 | size_t index2D; //local 2D index |
---|
| 2762 | |
---|
| 2763 | gIndex = s1*r23+s2*r3+s3; |
---|
| 2764 | lIndex = 0; |
---|
| 2765 | index2D = 0; |
---|
| 2766 | |
---|
| 2767 | type[lIndex] = 0; |
---|
| 2768 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2769 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2770 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2771 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2772 | P1[index2D] = vce->data; |
---|
| 2773 | |
---|
| 2774 | /* Process Row-s2 data s3+1*/ |
---|
| 2775 | gIndex = s1*r23+s2*r3+s3+1; |
---|
| 2776 | lIndex = 1; |
---|
| 2777 | index2D = 1; |
---|
| 2778 | |
---|
| 2779 | pred1D = P1[index2D-1]; |
---|
| 2780 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2781 | |
---|
| 2782 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2783 | |
---|
| 2784 | if (itvNum < exe_params->intvCapacity) |
---|
| 2785 | { |
---|
| 2786 | if (diff < 0) itvNum = -itvNum; |
---|
| 2787 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2788 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2789 | } |
---|
| 2790 | else |
---|
| 2791 | { |
---|
| 2792 | type[lIndex] = 0; |
---|
| 2793 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2794 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2795 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2796 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2797 | P1[index2D] = vce->data; |
---|
| 2798 | } |
---|
| 2799 | |
---|
| 2800 | /* Process Row-s2 data s3+2 --> data e3 */ |
---|
| 2801 | for (j = 2; j < R3; j++) |
---|
| 2802 | { |
---|
| 2803 | gIndex = s1*r23+s2*r3+s3+j; |
---|
| 2804 | lIndex = j; |
---|
| 2805 | index2D = j; |
---|
| 2806 | |
---|
| 2807 | pred1D = 2*P1[index2D-1] - P1[index2D-2]; |
---|
| 2808 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2809 | |
---|
| 2810 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2811 | |
---|
| 2812 | if (itvNum < exe_params->intvCapacity) |
---|
| 2813 | { |
---|
| 2814 | if (diff < 0) itvNum = -itvNum; |
---|
| 2815 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2816 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2817 | } |
---|
| 2818 | else |
---|
| 2819 | { |
---|
| 2820 | type[lIndex] = 0; |
---|
| 2821 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2822 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2823 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2824 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2825 | P1[index2D] = vce->data; |
---|
| 2826 | } |
---|
| 2827 | } |
---|
| 2828 | |
---|
| 2829 | /* Process Row-s2+1 --> Row-e2 */ |
---|
| 2830 | for (i = 1; i < R2; i++) |
---|
| 2831 | { |
---|
| 2832 | /* Process row-s2+i data s3 */ |
---|
| 2833 | gIndex = s1*r23+(s2+i)*r3+s3; |
---|
| 2834 | lIndex = i*R3; |
---|
| 2835 | index2D = i*R3; |
---|
| 2836 | |
---|
| 2837 | pred1D = P1[index2D-R3]; |
---|
| 2838 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2839 | |
---|
| 2840 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2841 | |
---|
| 2842 | if (itvNum < exe_params->intvCapacity) |
---|
| 2843 | { |
---|
| 2844 | if (diff < 0) itvNum = -itvNum; |
---|
| 2845 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2846 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2847 | } |
---|
| 2848 | else |
---|
| 2849 | { |
---|
| 2850 | type[lIndex] = 0; |
---|
| 2851 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2852 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2853 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2854 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2855 | P1[index2D] = vce->data; |
---|
| 2856 | } |
---|
| 2857 | |
---|
| 2858 | /* Process row-s2+i data s3+1 --> data e3*/ |
---|
| 2859 | for (j = 1; j < R3; j++) |
---|
| 2860 | { |
---|
| 2861 | gIndex = s1*r23+(s2+i)*r3+s3+j; |
---|
| 2862 | lIndex = i*R3+j; |
---|
| 2863 | index2D = i*R3+j; |
---|
| 2864 | |
---|
| 2865 | pred2D = P1[index2D-1] + P1[index2D-R3] - P1[index2D-R3-1]; |
---|
| 2866 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 2867 | |
---|
| 2868 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2869 | |
---|
| 2870 | if (itvNum < exe_params->intvCapacity) |
---|
| 2871 | { |
---|
| 2872 | if (diff < 0) itvNum = -itvNum; |
---|
| 2873 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2874 | P1[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2875 | } |
---|
| 2876 | else |
---|
| 2877 | { |
---|
| 2878 | type[lIndex] = 0; |
---|
| 2879 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2880 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2881 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2882 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2883 | P1[index2D] = vce->data; |
---|
| 2884 | } |
---|
| 2885 | } |
---|
| 2886 | } |
---|
| 2887 | |
---|
| 2888 | |
---|
| 2889 | /////////////////////////// Process layer-s1+1 --> layer-e1 /////////////////////////// |
---|
| 2890 | |
---|
| 2891 | for (k = 1; k < R1; k++) |
---|
| 2892 | { |
---|
| 2893 | /* Process Row-s2 data s3*/ |
---|
| 2894 | gIndex = (s1+k)*r23+s2*r3+s3; |
---|
| 2895 | lIndex = k*R23; |
---|
| 2896 | index2D = 0; |
---|
| 2897 | |
---|
| 2898 | pred1D = P1[index2D]; |
---|
| 2899 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 2900 | |
---|
| 2901 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2902 | |
---|
| 2903 | if (itvNum < exe_params->intvCapacity) |
---|
| 2904 | { |
---|
| 2905 | if (diff < 0) itvNum = -itvNum; |
---|
| 2906 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2907 | P0[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2908 | } |
---|
| 2909 | else |
---|
| 2910 | { |
---|
| 2911 | type[lIndex] = 0; |
---|
| 2912 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2913 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2914 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2915 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2916 | P0[index2D] = vce->data; |
---|
| 2917 | } |
---|
| 2918 | |
---|
| 2919 | /* Process Row-s2 data s3+1 --> data e3 */ |
---|
| 2920 | for (j = 1; j < R3; j++) |
---|
| 2921 | { |
---|
| 2922 | gIndex = (s1+k)*r23+s2*r3+s3+j; |
---|
| 2923 | lIndex = k*R23+j; |
---|
| 2924 | index2D = j; |
---|
| 2925 | |
---|
| 2926 | pred2D = P0[index2D-1] + P1[index2D] - P1[index2D-1]; |
---|
| 2927 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 2928 | |
---|
| 2929 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2930 | |
---|
| 2931 | if (itvNum < exe_params->intvCapacity) |
---|
| 2932 | { |
---|
| 2933 | if (diff < 0) itvNum = -itvNum; |
---|
| 2934 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2935 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2936 | } |
---|
| 2937 | else |
---|
| 2938 | { |
---|
| 2939 | type[lIndex] = 0; |
---|
| 2940 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2941 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2942 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2943 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2944 | P0[index2D] = vce->data; |
---|
| 2945 | } |
---|
| 2946 | } |
---|
| 2947 | |
---|
| 2948 | /* Process Row-s2+1 --> Row-e2 */ |
---|
| 2949 | for (i = 1; i < R2; i++) |
---|
| 2950 | { |
---|
| 2951 | /* Process Row-s2+i data s3 */ |
---|
| 2952 | gIndex = (s1+k)*r23+(s2+i)*r3+s3; |
---|
| 2953 | lIndex = k*R23+i*R3; |
---|
| 2954 | index2D = i*R3; |
---|
| 2955 | |
---|
| 2956 | pred2D = P0[index2D-R3] + P1[index2D] - P1[index2D-R3]; |
---|
| 2957 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 2958 | |
---|
| 2959 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2960 | |
---|
| 2961 | if (itvNum < exe_params->intvCapacity) |
---|
| 2962 | { |
---|
| 2963 | if (diff < 0) itvNum = -itvNum; |
---|
| 2964 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2965 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2966 | } |
---|
| 2967 | else |
---|
| 2968 | { |
---|
| 2969 | type[lIndex] = 0; |
---|
| 2970 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 2971 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 2972 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 2973 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 2974 | P0[index2D] = vce->data; |
---|
| 2975 | } |
---|
| 2976 | |
---|
| 2977 | /* Process Row-s2+i data s3+1 --> data e3 */ |
---|
| 2978 | for (j = 1; j < R3; j++) |
---|
| 2979 | { |
---|
| 2980 | gIndex = (s1+k)*r23+(s2+i)*r3+s3+j; |
---|
| 2981 | lIndex = k*R23+i*R3+j; |
---|
| 2982 | index2D = i*R3+j; |
---|
| 2983 | |
---|
| 2984 | // printf ("global index = %d, local index = %d\n", gIndex, lIndex); |
---|
| 2985 | |
---|
| 2986 | pred3D = P0[index2D-1] + P0[index2D-R3]+ P1[index2D] - P0[index2D-R3-1] - P1[index2D-R3] - P1[index2D-1] + P1[index2D-R3-1]; |
---|
| 2987 | diff = spaceFillingValue[gIndex] - pred3D; |
---|
| 2988 | |
---|
| 2989 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 2990 | |
---|
| 2991 | if (itvNum < exe_params->intvCapacity) |
---|
| 2992 | { |
---|
| 2993 | if (diff < 0) itvNum = -itvNum; |
---|
| 2994 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 2995 | P0[index2D] = pred3D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 2996 | } |
---|
| 2997 | else |
---|
| 2998 | { |
---|
| 2999 | type[lIndex] = 0; |
---|
| 3000 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3001 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3002 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 3003 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3004 | P0[index2D] = vce->data; |
---|
| 3005 | } |
---|
| 3006 | } |
---|
| 3007 | } |
---|
| 3008 | |
---|
| 3009 | float *Pt; |
---|
| 3010 | Pt = P1; |
---|
| 3011 | P1 = P0; |
---|
| 3012 | P0 = Pt; |
---|
| 3013 | } |
---|
| 3014 | |
---|
| 3015 | free(P0); |
---|
| 3016 | free(P1); |
---|
| 3017 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 3018 | |
---|
| 3019 | TightDataPointStorageF* tdps; |
---|
| 3020 | |
---|
| 3021 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
| 3022 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 3023 | exactLeadNumArray->array, |
---|
| 3024 | resiBitArray->array, resiBitArray->size, |
---|
| 3025 | resiBitsLength, |
---|
| 3026 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 3027 | |
---|
| 3028 | //free memory |
---|
| 3029 | free_DIA(exactLeadNumArray); |
---|
| 3030 | free_DIA(resiBitArray); |
---|
| 3031 | free(type); |
---|
| 3032 | free(vce); |
---|
| 3033 | free(lce); |
---|
| 3034 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 3035 | |
---|
| 3036 | return tdps; |
---|
| 3037 | } |
---|
| 3038 | |
---|
| 3039 | TightDataPointStorageF* SZ_compress_float_4D_MDQ_subblock(float *oriData, double realPrecision, float valueRangeSize, float medianValue_f, |
---|
| 3040 | size_t r1, size_t r2, size_t r3, size_t r4, size_t s1, size_t s2, size_t s3, size_t s4, size_t e1, size_t e2, size_t e3, size_t e4) |
---|
| 3041 | { |
---|
| 3042 | unsigned int quantization_intervals; |
---|
| 3043 | if(exe_params->optQuantMode==1) |
---|
| 3044 | { |
---|
| 3045 | quantization_intervals = optimize_intervals_float_4D_subblock(oriData, realPrecision, r1, r2, r3, r4, s1, s2, s3, s4, e1, e2, e3, e4); |
---|
| 3046 | updateQuantizationInfo(quantization_intervals); |
---|
| 3047 | } |
---|
| 3048 | else |
---|
| 3049 | quantization_intervals = exe_params->intvCapacity; |
---|
| 3050 | |
---|
| 3051 | size_t i,j,k; |
---|
| 3052 | int reqLength; |
---|
| 3053 | float pred1D, pred2D, pred3D; |
---|
| 3054 | float diff = 0.0; |
---|
| 3055 | double itvNum = 0; |
---|
| 3056 | float *P0, *P1; |
---|
| 3057 | |
---|
| 3058 | size_t R1 = e1 - s1 + 1; |
---|
| 3059 | size_t R2 = e2 - s2 + 1; |
---|
| 3060 | size_t R3 = e3 - s3 + 1; |
---|
| 3061 | size_t R4 = e4 - s4 + 1; |
---|
| 3062 | |
---|
| 3063 | size_t dataLength = R1*R2*R3*R4; |
---|
| 3064 | |
---|
| 3065 | size_t r34 = r3*r4; |
---|
| 3066 | size_t r234 = r2*r3*r4; |
---|
| 3067 | size_t R34 = R3*R4; |
---|
| 3068 | size_t R234 = R2*R3*R4; |
---|
| 3069 | |
---|
| 3070 | P0 = (float*)malloc(R34*sizeof(float)); |
---|
| 3071 | P1 = (float*)malloc(R34*sizeof(float)); |
---|
| 3072 | |
---|
| 3073 | float medianValue = medianValue_f; |
---|
| 3074 | short radExpo = getExponent_float(valueRangeSize/2); |
---|
| 3075 | computeReqLength_float(realPrecision, radExpo, &reqLength, &medianValue); |
---|
| 3076 | |
---|
| 3077 | int* type = (int*) malloc(dataLength*sizeof(int)); |
---|
| 3078 | |
---|
| 3079 | float* spaceFillingValue = oriData; // |
---|
| 3080 | |
---|
| 3081 | DynamicIntArray *exactLeadNumArray; |
---|
| 3082 | new_DIA(&exactLeadNumArray, DynArrayInitLen); |
---|
| 3083 | |
---|
| 3084 | DynamicByteArray *exactMidByteArray; |
---|
| 3085 | new_DBA(&exactMidByteArray, DynArrayInitLen); |
---|
| 3086 | |
---|
| 3087 | DynamicIntArray *resiBitArray; |
---|
| 3088 | new_DIA(&resiBitArray, DynArrayInitLen); |
---|
| 3089 | |
---|
| 3090 | unsigned char preDataBytes[4]; |
---|
| 3091 | intToBytes_bigEndian(preDataBytes, 0); |
---|
| 3092 | |
---|
| 3093 | int reqBytesLength = reqLength/8; |
---|
| 3094 | int resiBitsLength = reqLength%8; |
---|
| 3095 | |
---|
| 3096 | FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement)); |
---|
| 3097 | LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement)); |
---|
| 3098 | |
---|
| 3099 | |
---|
| 3100 | size_t l; |
---|
| 3101 | for (l = 0; l < R1; l++) |
---|
| 3102 | { |
---|
| 3103 | |
---|
| 3104 | /////////////////////////// Process layer-s2 /////////////////////////// |
---|
| 3105 | /* Process Row-s3 data s4*/ |
---|
| 3106 | size_t gIndex; //global index |
---|
| 3107 | size_t lIndex; //local index |
---|
| 3108 | size_t index2D; //local 2D index |
---|
| 3109 | |
---|
| 3110 | gIndex = (s1+l)*r234+s2*r34+s3*r4+s4; |
---|
| 3111 | lIndex = l*R234; |
---|
| 3112 | index2D = 0; |
---|
| 3113 | |
---|
| 3114 | type[lIndex] = 0; |
---|
| 3115 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3116 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3117 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 3118 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3119 | P1[index2D] = vce->data; |
---|
| 3120 | |
---|
| 3121 | /* Process Row-s3 data s4+1*/ |
---|
| 3122 | gIndex = (s1+l)*r234+s2*r34+s3*r4+s4+1; |
---|
| 3123 | lIndex = l*R234+1; |
---|
| 3124 | index2D = 1; |
---|
| 3125 | |
---|
| 3126 | pred1D = P1[index2D-1]; |
---|
| 3127 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 3128 | |
---|
| 3129 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3130 | |
---|
| 3131 | if (itvNum < exe_params->intvCapacity) |
---|
| 3132 | { |
---|
| 3133 | if (diff < 0) itvNum = -itvNum; |
---|
| 3134 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3135 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3136 | } |
---|
| 3137 | else |
---|
| 3138 | { |
---|
| 3139 | type[lIndex] = 0; |
---|
| 3140 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3141 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3142 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 3143 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3144 | P1[index2D] = vce->data; |
---|
| 3145 | } |
---|
| 3146 | |
---|
| 3147 | /* Process Row-s3 data s4+2 --> data e4 */ |
---|
| 3148 | for (j = 2; j < R4; j++) |
---|
| 3149 | { |
---|
| 3150 | gIndex = (s1+l)*r234+s2*r34+s3*r4+s4+j; |
---|
| 3151 | lIndex = l*R234+j; |
---|
| 3152 | index2D = j; |
---|
| 3153 | |
---|
| 3154 | pred1D = 2*P1[index2D-1] - P1[index2D-2]; |
---|
| 3155 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 3156 | |
---|
| 3157 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3158 | |
---|
| 3159 | if (itvNum < exe_params->intvCapacity) |
---|
| 3160 | { |
---|
| 3161 | if (diff < 0) itvNum = -itvNum; |
---|
| 3162 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3163 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3164 | } |
---|
| 3165 | else |
---|
| 3166 | { |
---|
| 3167 | type[lIndex] = 0; |
---|
| 3168 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3169 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3170 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 3171 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3172 | P1[index2D] = vce->data; |
---|
| 3173 | } |
---|
| 3174 | } |
---|
| 3175 | |
---|
| 3176 | /* Process Row-s3+1 --> Row-e3 */ |
---|
| 3177 | for (i = 1; i < R3; i++) |
---|
| 3178 | { |
---|
| 3179 | /* Process row-s2+i data s3 */ |
---|
| 3180 | gIndex = (s1+l)*r234+s2*r34+(s3+i)*r4+s4; |
---|
| 3181 | lIndex = l*R234+i*R4; |
---|
| 3182 | index2D = i*R4; |
---|
| 3183 | |
---|
| 3184 | pred1D = P1[index2D-R4]; |
---|
| 3185 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 3186 | |
---|
| 3187 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3188 | |
---|
| 3189 | if (itvNum < exe_params->intvCapacity) |
---|
| 3190 | { |
---|
| 3191 | if (diff < 0) itvNum = -itvNum; |
---|
| 3192 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3193 | P1[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3194 | } |
---|
| 3195 | else |
---|
| 3196 | { |
---|
| 3197 | type[lIndex] = 0; |
---|
| 3198 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3199 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3200 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 3201 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3202 | P1[index2D] = vce->data; |
---|
| 3203 | } |
---|
| 3204 | |
---|
| 3205 | /* Process row-s3+i data s4+1 --> data e4*/ |
---|
| 3206 | for (j = 1; j < R4; j++) |
---|
| 3207 | { |
---|
| 3208 | gIndex = (s1+l)*r234+s2*r34+(s3+i)*r4+s4+j; |
---|
| 3209 | lIndex = l*R234+i*R4+j; |
---|
| 3210 | index2D = i*R4+j; |
---|
| 3211 | |
---|
| 3212 | pred2D = P1[index2D-1] + P1[index2D-R4] - P1[index2D-R4-1]; |
---|
| 3213 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 3214 | |
---|
| 3215 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3216 | |
---|
| 3217 | if (itvNum < exe_params->intvCapacity) |
---|
| 3218 | { |
---|
| 3219 | if (diff < 0) itvNum = -itvNum; |
---|
| 3220 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3221 | P1[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3222 | } |
---|
| 3223 | else |
---|
| 3224 | { |
---|
| 3225 | type[lIndex] = 0; |
---|
| 3226 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3227 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3228 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 3229 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3230 | P1[index2D] = vce->data; |
---|
| 3231 | } |
---|
| 3232 | } |
---|
| 3233 | } |
---|
| 3234 | |
---|
| 3235 | |
---|
| 3236 | /////////////////////////// Process layer-s2+1 --> layer-e2 /////////////////////////// |
---|
| 3237 | |
---|
| 3238 | for (k = 1; k < R2; k++) |
---|
| 3239 | { |
---|
| 3240 | /* Process Row-s3 data s4*/ |
---|
| 3241 | gIndex = (s1+l)*r234+(s2+k)*r34+s3*r4+s4; |
---|
| 3242 | lIndex = l*R234+k*R34; |
---|
| 3243 | index2D = 0; |
---|
| 3244 | |
---|
| 3245 | pred1D = P1[index2D]; |
---|
| 3246 | diff = spaceFillingValue[gIndex] - pred1D; |
---|
| 3247 | |
---|
| 3248 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3249 | |
---|
| 3250 | if (itvNum < exe_params->intvCapacity) |
---|
| 3251 | { |
---|
| 3252 | if (diff < 0) itvNum = -itvNum; |
---|
| 3253 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3254 | P0[index2D] = pred1D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3255 | } |
---|
| 3256 | else |
---|
| 3257 | { |
---|
| 3258 | type[lIndex] = 0; |
---|
| 3259 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3260 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3261 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 3262 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3263 | P0[index2D] = vce->data; |
---|
| 3264 | } |
---|
| 3265 | |
---|
| 3266 | /* Process Row-s3 data s4+1 --> data e4 */ |
---|
| 3267 | for (j = 1; j < R4; j++) |
---|
| 3268 | { |
---|
| 3269 | gIndex = (s1+l)*r234+(s2+k)*r34+s3*r4+s4+j; |
---|
| 3270 | lIndex = l*R234+k*R34+j; |
---|
| 3271 | index2D = j; |
---|
| 3272 | |
---|
| 3273 | pred2D = P0[index2D-1] + P1[index2D] - P1[index2D-1]; |
---|
| 3274 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 3275 | |
---|
| 3276 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3277 | |
---|
| 3278 | if (itvNum < exe_params->intvCapacity) |
---|
| 3279 | { |
---|
| 3280 | if (diff < 0) itvNum = -itvNum; |
---|
| 3281 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3282 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3283 | } |
---|
| 3284 | else |
---|
| 3285 | { |
---|
| 3286 | type[lIndex] = 0; |
---|
| 3287 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3288 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3289 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 3290 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3291 | P0[index2D] = vce->data; |
---|
| 3292 | } |
---|
| 3293 | } |
---|
| 3294 | |
---|
| 3295 | /* Process Row-s3+1 --> Row-e3 */ |
---|
| 3296 | for (i = 1; i < R3; i++) |
---|
| 3297 | { |
---|
| 3298 | /* Process Row-s3+i data s4 */ |
---|
| 3299 | gIndex = (s1+l)*r234+(s2+k)*r34+(s3+i)*r4+s4; |
---|
| 3300 | lIndex = l*R234+k*R34+i*R4; |
---|
| 3301 | index2D = i*R4; |
---|
| 3302 | |
---|
| 3303 | pred2D = P0[index2D-R4] + P1[index2D] - P1[index2D-R4]; |
---|
| 3304 | diff = spaceFillingValue[gIndex] - pred2D; |
---|
| 3305 | |
---|
| 3306 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3307 | |
---|
| 3308 | if (itvNum < exe_params->intvCapacity) |
---|
| 3309 | { |
---|
| 3310 | if (diff < 0) itvNum = -itvNum; |
---|
| 3311 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3312 | P0[index2D] = pred2D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3313 | } |
---|
| 3314 | else |
---|
| 3315 | { |
---|
| 3316 | type[lIndex] = 0; |
---|
| 3317 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3318 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3319 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 3320 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3321 | P0[index2D] = vce->data; |
---|
| 3322 | } |
---|
| 3323 | |
---|
| 3324 | /* Process Row-s3+i data s4+1 --> data e4 */ |
---|
| 3325 | for (j = 1; j < R4; j++) |
---|
| 3326 | { |
---|
| 3327 | gIndex = (s1+l)*r234+(s2+k)*r34+(s3+i)*r4+s4+j; |
---|
| 3328 | lIndex = l*R234+k*R34+i*R4+j; |
---|
| 3329 | index2D = i*R4+j; |
---|
| 3330 | |
---|
| 3331 | // printf ("global index = %d, local index = %d\n", gIndex, lIndex); |
---|
| 3332 | |
---|
| 3333 | pred3D = P0[index2D-1] + P0[index2D-R4]+ P1[index2D] - P0[index2D-R4-1] - P1[index2D-R4] - P1[index2D-1] + P1[index2D-R4-1]; |
---|
| 3334 | diff = spaceFillingValue[gIndex] - pred3D; |
---|
| 3335 | |
---|
| 3336 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3337 | |
---|
| 3338 | if (itvNum < exe_params->intvCapacity) |
---|
| 3339 | { |
---|
| 3340 | if (diff < 0) itvNum = -itvNum; |
---|
| 3341 | type[lIndex] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3342 | P0[index2D] = pred3D + 2 * (type[lIndex] - exe_params->intvRadius) * realPrecision; |
---|
| 3343 | } |
---|
| 3344 | else |
---|
| 3345 | { |
---|
| 3346 | type[lIndex] = 0; |
---|
| 3347 | compressSingleFloatValue(vce, spaceFillingValue[gIndex], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength); |
---|
| 3348 | updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce); |
---|
| 3349 | memcpy(preDataBytes,vce->curBytes,4); |
---|
| 3350 | addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce); |
---|
| 3351 | P0[index2D] = vce->data; |
---|
| 3352 | } |
---|
| 3353 | } |
---|
| 3354 | } |
---|
| 3355 | |
---|
| 3356 | float *Pt; |
---|
| 3357 | Pt = P1; |
---|
| 3358 | P1 = P0; |
---|
| 3359 | P0 = Pt; |
---|
| 3360 | } |
---|
| 3361 | |
---|
| 3362 | } |
---|
| 3363 | |
---|
| 3364 | free(P0); |
---|
| 3365 | free(P1); |
---|
| 3366 | size_t exactDataNum = exactLeadNumArray->size; |
---|
| 3367 | |
---|
| 3368 | TightDataPointStorageF* tdps; |
---|
| 3369 | |
---|
| 3370 | new_TightDataPointStorageF(&tdps, dataLength, exactDataNum, |
---|
| 3371 | type, exactMidByteArray->array, exactMidByteArray->size, |
---|
| 3372 | exactLeadNumArray->array, |
---|
| 3373 | resiBitArray->array, resiBitArray->size, |
---|
| 3374 | resiBitsLength, |
---|
| 3375 | realPrecision, medianValue, (char)reqLength, quantization_intervals, NULL, 0, 0); |
---|
| 3376 | |
---|
| 3377 | //free memory |
---|
| 3378 | free_DIA(exactLeadNumArray); |
---|
| 3379 | free_DIA(resiBitArray); |
---|
| 3380 | free(type); |
---|
| 3381 | free(vce); |
---|
| 3382 | free(lce); |
---|
| 3383 | free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps); |
---|
| 3384 | |
---|
| 3385 | return tdps; |
---|
| 3386 | } |
---|
| 3387 | |
---|
| 3388 | unsigned int optimize_intervals_float_3D_opt(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision) |
---|
| 3389 | { |
---|
| 3390 | size_t i; |
---|
| 3391 | size_t radiusIndex; |
---|
| 3392 | size_t r23=r2*r3; |
---|
| 3393 | float pred_value = 0, pred_err; |
---|
| 3394 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 3395 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
[9ee2ce3] | 3396 | size_t totalSampleSize = 0; |
---|
[2c47b73] | 3397 | |
---|
| 3398 | size_t offset_count = confparams_cpr->sampleDistance - 2; // count r3 offset |
---|
| 3399 | size_t offset_count_2; |
---|
| 3400 | float * data_pos = oriData + r23 + r3 + offset_count; |
---|
| 3401 | size_t n1_count = 1, n2_count = 1; // count i,j sum |
---|
| 3402 | size_t len = r1 * r2 * r3; |
---|
| 3403 | while(data_pos - oriData < len){ |
---|
| 3404 | totalSampleSize++; |
---|
| 3405 | pred_value = data_pos[-1] + data_pos[-r3] + data_pos[-r23] - data_pos[-1-r23] - data_pos[-r3-1] - data_pos[-r3-r23] + data_pos[-r3-r23-1]; |
---|
| 3406 | pred_err = fabs(pred_value - *data_pos); |
---|
| 3407 | radiusIndex = (pred_err/realPrecision+1)/2; |
---|
| 3408 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 3409 | { |
---|
| 3410 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 3411 | } |
---|
| 3412 | intervals[radiusIndex]++; |
---|
| 3413 | offset_count += confparams_cpr->sampleDistance; |
---|
| 3414 | if(offset_count >= r3){ |
---|
| 3415 | n2_count ++; |
---|
| 3416 | if(n2_count == r2){ |
---|
| 3417 | n1_count ++; |
---|
| 3418 | n2_count = 1; |
---|
| 3419 | data_pos += r3; |
---|
| 3420 | } |
---|
| 3421 | offset_count_2 = (n1_count + n2_count) % confparams_cpr->sampleDistance; |
---|
| 3422 | data_pos += (r3 + confparams_cpr->sampleDistance - offset_count) + (confparams_cpr->sampleDistance - offset_count_2); |
---|
| 3423 | offset_count = (confparams_cpr->sampleDistance - offset_count_2); |
---|
| 3424 | if(offset_count == 0) offset_count ++; |
---|
| 3425 | } |
---|
| 3426 | else data_pos += confparams_cpr->sampleDistance; |
---|
| 3427 | } |
---|
| 3428 | //compute the appropriate number |
---|
| 3429 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 3430 | size_t sum = 0; |
---|
| 3431 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 3432 | { |
---|
| 3433 | sum += intervals[i]; |
---|
| 3434 | if(sum>targetCount) |
---|
| 3435 | break; |
---|
| 3436 | } |
---|
| 3437 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 3438 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 3439 | unsigned int accIntervals = 2*(i+1); |
---|
| 3440 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 3441 | |
---|
| 3442 | if(powerOf2<32) |
---|
| 3443 | powerOf2 = 32; |
---|
| 3444 | free(intervals); |
---|
| 3445 | return powerOf2; |
---|
| 3446 | } |
---|
| 3447 | |
---|
| 3448 | size_t SZ_compress_float_3D_MDQ_RA_block(float * block_ori_data, float * mean, size_t dim_0, size_t dim_1, size_t dim_2, size_t block_dim_0, size_t block_dim_1, size_t block_dim_2, double realPrecision, float * P0, float * P1, int * type, float * unpredictable_data){ |
---|
| 3449 | |
---|
| 3450 | size_t dim0_offset = dim_1 * dim_2; |
---|
| 3451 | size_t dim1_offset = dim_2; |
---|
| 3452 | |
---|
| 3453 | // data_pos = block_ori_data; |
---|
| 3454 | // for(size_t i=0; i<block_dim_0; i++){ |
---|
| 3455 | // for(size_t j=0; j<block_dim_1; j++){ |
---|
| 3456 | // for(size_t k=0; k<block_dim_2; k++){ |
---|
| 3457 | // sum += *data_pos; |
---|
| 3458 | // data_pos ++; |
---|
| 3459 | // } |
---|
| 3460 | // data_pos += dim1_offset - block_dim_2; |
---|
| 3461 | // } |
---|
| 3462 | // data_pos += dim0_offset - block_dim_1 * dim1_offset; |
---|
| 3463 | // } |
---|
| 3464 | // size_t num_elements = block_dim_0 * block_dim_1 * block_dim_2; |
---|
| 3465 | // if(num_elements > 0) mean[0] = sum / num_elements; |
---|
| 3466 | // else mean[0] = 0.0; |
---|
| 3467 | mean[0] = block_ori_data[0]; |
---|
| 3468 | |
---|
| 3469 | size_t unpredictable_count = 0; |
---|
| 3470 | size_t r1, r2, r3; |
---|
| 3471 | r1 = block_dim_0; |
---|
| 3472 | r2 = block_dim_1; |
---|
| 3473 | r3 = block_dim_2; |
---|
| 3474 | |
---|
| 3475 | float * cur_data_pos = block_ori_data; |
---|
| 3476 | float curData; |
---|
| 3477 | float pred1D, pred2D, pred3D; |
---|
| 3478 | double itvNum; |
---|
| 3479 | double diff; |
---|
| 3480 | size_t i, j, k; |
---|
| 3481 | size_t r23 = r2*r3; |
---|
| 3482 | // Process Row-0 data 0 |
---|
| 3483 | pred1D = mean[0]; |
---|
| 3484 | curData = *cur_data_pos; |
---|
| 3485 | diff = curData - pred1D; |
---|
| 3486 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3487 | if (itvNum < exe_params->intvCapacity){ |
---|
| 3488 | if (diff < 0) itvNum = -itvNum; |
---|
| 3489 | type[0] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3490 | P1[0] = pred1D + 2 * (type[0] - exe_params->intvRadius) * realPrecision; |
---|
| 3491 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3492 | if(fabs(curData-P1[0])>realPrecision){ |
---|
| 3493 | type[0] = 0; |
---|
| 3494 | P1[0] = curData; |
---|
| 3495 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3496 | } |
---|
| 3497 | } |
---|
| 3498 | else{ |
---|
| 3499 | type[0] = 0; |
---|
| 3500 | P1[0] = curData; |
---|
| 3501 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3502 | } |
---|
| 3503 | |
---|
| 3504 | /* Process Row-0 data 1*/ |
---|
| 3505 | pred1D = P1[0]; |
---|
| 3506 | curData = cur_data_pos[1]; |
---|
| 3507 | diff = curData - pred1D; |
---|
| 3508 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3509 | if (itvNum < exe_params->intvCapacity){ |
---|
| 3510 | if (diff < 0) itvNum = -itvNum; |
---|
| 3511 | type[1] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3512 | P1[1] = pred1D + 2 * (type[1] - exe_params->intvRadius) * realPrecision; |
---|
| 3513 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3514 | if(fabs(curData-P1[1])>realPrecision){ |
---|
| 3515 | type[1] = 0; |
---|
| 3516 | P1[1] = curData; |
---|
| 3517 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3518 | } |
---|
| 3519 | } |
---|
| 3520 | else{ |
---|
| 3521 | type[1] = 0; |
---|
| 3522 | P1[1] = curData; |
---|
| 3523 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3524 | } |
---|
| 3525 | /* Process Row-0 data 2 --> data r3-1 */ |
---|
| 3526 | for (j = 2; j < r3; j++){ |
---|
| 3527 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
| 3528 | curData = cur_data_pos[j]; |
---|
| 3529 | diff = curData - pred1D; |
---|
| 3530 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3531 | if (itvNum < exe_params->intvCapacity){ |
---|
| 3532 | if (diff < 0) itvNum = -itvNum; |
---|
| 3533 | type[j] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3534 | P1[j] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
| 3535 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3536 | if(fabs(curData-P1[j])>realPrecision){ |
---|
| 3537 | type[j] = 0; |
---|
| 3538 | P1[j] = curData; |
---|
| 3539 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3540 | } |
---|
| 3541 | } |
---|
| 3542 | else{ |
---|
| 3543 | type[j] = 0; |
---|
| 3544 | P1[j] = curData; |
---|
| 3545 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3546 | } |
---|
| 3547 | } |
---|
| 3548 | cur_data_pos += dim1_offset; |
---|
| 3549 | |
---|
| 3550 | /* Process Row-1 --> Row-r2-1 */ |
---|
| 3551 | size_t index; |
---|
| 3552 | for (i = 1; i < r2; i++) |
---|
| 3553 | { |
---|
| 3554 | /* Process row-i data 0 */ |
---|
| 3555 | index = i*r3; |
---|
| 3556 | pred1D = P1[index-r3]; |
---|
| 3557 | curData = *cur_data_pos; |
---|
| 3558 | diff = curData - pred1D; |
---|
| 3559 | |
---|
| 3560 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3561 | |
---|
| 3562 | if (itvNum < exe_params->intvCapacity) |
---|
| 3563 | { |
---|
| 3564 | if (diff < 0) itvNum = -itvNum; |
---|
| 3565 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3566 | P1[index] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 3567 | |
---|
| 3568 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3569 | if(fabs(curData-P1[index])>realPrecision) |
---|
| 3570 | { |
---|
| 3571 | type[index] = 0; |
---|
| 3572 | P1[index] = curData; |
---|
| 3573 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3574 | } |
---|
| 3575 | } |
---|
| 3576 | else |
---|
| 3577 | { |
---|
| 3578 | type[index] = 0; |
---|
| 3579 | P1[index] = curData; |
---|
| 3580 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3581 | } |
---|
| 3582 | |
---|
| 3583 | /* Process row-i data 1 --> data r3-1*/ |
---|
| 3584 | for (j = 1; j < r3; j++) |
---|
| 3585 | { |
---|
| 3586 | index = i*r3+j; |
---|
| 3587 | pred2D = P1[index-1] + P1[index-r3] - P1[index-r3-1]; |
---|
| 3588 | |
---|
| 3589 | curData = cur_data_pos[j]; |
---|
| 3590 | diff = curData - pred2D; |
---|
| 3591 | |
---|
| 3592 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3593 | |
---|
| 3594 | if (itvNum < exe_params->intvCapacity) |
---|
| 3595 | { |
---|
| 3596 | if (diff < 0) itvNum = -itvNum; |
---|
| 3597 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3598 | P1[index] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 3599 | |
---|
| 3600 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3601 | if(fabs(curData-P1[index])>realPrecision) |
---|
| 3602 | { |
---|
| 3603 | type[index] = 0; |
---|
| 3604 | P1[index] = curData; |
---|
| 3605 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3606 | } |
---|
| 3607 | } |
---|
| 3608 | else |
---|
| 3609 | { |
---|
| 3610 | type[index] = 0; |
---|
| 3611 | P1[index] = curData; |
---|
| 3612 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3613 | } |
---|
| 3614 | } |
---|
| 3615 | cur_data_pos += dim1_offset; |
---|
| 3616 | } |
---|
| 3617 | cur_data_pos += dim0_offset - r2 * dim1_offset; |
---|
| 3618 | |
---|
| 3619 | /////////////////////////// Process layer-1 --> layer-r1-1 /////////////////////////// |
---|
| 3620 | |
---|
| 3621 | for (k = 1; k < r1; k++) |
---|
| 3622 | { |
---|
| 3623 | /* Process Row-0 data 0*/ |
---|
| 3624 | index = k*r23; |
---|
| 3625 | pred1D = P1[0]; |
---|
| 3626 | curData = *cur_data_pos; |
---|
| 3627 | diff = curData - pred1D; |
---|
| 3628 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3629 | if (itvNum < exe_params->intvCapacity) |
---|
| 3630 | { |
---|
| 3631 | if (diff < 0) itvNum = -itvNum; |
---|
| 3632 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3633 | P0[0] = pred1D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 3634 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3635 | if(fabs(curData-P0[0])>realPrecision) |
---|
| 3636 | { |
---|
| 3637 | type[index] = 0; |
---|
| 3638 | P0[0] = curData; |
---|
| 3639 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3640 | } |
---|
| 3641 | } |
---|
| 3642 | else |
---|
| 3643 | { |
---|
| 3644 | type[index] = 0; |
---|
| 3645 | P0[0] = curData; |
---|
| 3646 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3647 | } |
---|
| 3648 | /* Process Row-0 data 1 --> data r3-1 */ |
---|
| 3649 | for (j = 1; j < r3; j++) |
---|
| 3650 | { |
---|
| 3651 | //index = k*r2*r3+j; |
---|
| 3652 | index ++; |
---|
| 3653 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
| 3654 | curData = cur_data_pos[j]; |
---|
| 3655 | diff = curData - pred2D; |
---|
| 3656 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3657 | if (itvNum < exe_params->intvCapacity) |
---|
| 3658 | { |
---|
| 3659 | if (diff < 0) itvNum = -itvNum; |
---|
| 3660 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3661 | P0[j] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 3662 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3663 | if(fabs(curData-P0[j])>realPrecision) |
---|
| 3664 | { |
---|
| 3665 | type[index] = 0; |
---|
| 3666 | P0[j] = curData; |
---|
| 3667 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3668 | } |
---|
| 3669 | } |
---|
| 3670 | else |
---|
| 3671 | { |
---|
| 3672 | type[index] = 0; |
---|
| 3673 | P0[j] = curData; |
---|
| 3674 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3675 | } |
---|
| 3676 | } |
---|
| 3677 | |
---|
| 3678 | cur_data_pos += dim1_offset; |
---|
| 3679 | /* Process Row-1 --> Row-r2-1 */ |
---|
| 3680 | size_t index2D; |
---|
| 3681 | for (i = 1; i < r2; i++) |
---|
| 3682 | { |
---|
| 3683 | /* Process Row-i data 0 */ |
---|
| 3684 | index = k*r23 + i*r3; |
---|
| 3685 | index2D = i*r3; |
---|
| 3686 | pred2D = P0[index2D-r3] + P1[index2D] - P1[index2D-r3]; |
---|
| 3687 | curData = *cur_data_pos; |
---|
| 3688 | diff = curData - pred2D; |
---|
| 3689 | |
---|
| 3690 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3691 | |
---|
| 3692 | if (itvNum < exe_params->intvCapacity) |
---|
| 3693 | { |
---|
| 3694 | if (diff < 0) itvNum = -itvNum; |
---|
| 3695 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3696 | P0[index2D] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 3697 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3698 | if(fabs(curData-P0[index2D])>realPrecision) |
---|
| 3699 | { |
---|
| 3700 | type[index] = 0; |
---|
| 3701 | P0[index2D] = curData; |
---|
| 3702 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3703 | } |
---|
| 3704 | } |
---|
| 3705 | else |
---|
| 3706 | { |
---|
| 3707 | type[index] = 0; |
---|
| 3708 | P0[index2D] = curData; |
---|
| 3709 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3710 | } |
---|
| 3711 | |
---|
| 3712 | /* Process Row-i data 1 --> data r3-1 */ |
---|
| 3713 | for (j = 1; j < r3; j++) |
---|
| 3714 | { |
---|
| 3715 | //index = k*r2*r3 + i*r3 + j; |
---|
| 3716 | index ++; |
---|
| 3717 | index2D = i*r3 + j; |
---|
| 3718 | pred3D = P0[index2D-1] + P0[index2D-r3]+ P1[index2D] - P0[index2D-r3-1] - P1[index2D-r3] - P1[index2D-1] + P1[index2D-r3-1]; |
---|
| 3719 | curData = cur_data_pos[j]; |
---|
| 3720 | diff = curData - pred3D; |
---|
| 3721 | |
---|
| 3722 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3723 | |
---|
| 3724 | if (itvNum < exe_params->intvCapacity) |
---|
| 3725 | { |
---|
| 3726 | if (diff < 0) itvNum = -itvNum; |
---|
| 3727 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3728 | P0[index2D] = pred3D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 3729 | |
---|
| 3730 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3731 | if(fabs(curData-P0[index2D])>realPrecision) |
---|
| 3732 | { |
---|
| 3733 | type[index] = 0; |
---|
| 3734 | P0[index2D] = curData; |
---|
| 3735 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3736 | } |
---|
| 3737 | } |
---|
| 3738 | else |
---|
| 3739 | { |
---|
| 3740 | type[index] = 0; |
---|
| 3741 | P0[index2D] = curData; |
---|
| 3742 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3743 | } |
---|
| 3744 | } |
---|
| 3745 | cur_data_pos += dim1_offset; |
---|
| 3746 | } |
---|
| 3747 | cur_data_pos += dim0_offset - r2 * dim1_offset; |
---|
| 3748 | float *Pt; |
---|
| 3749 | Pt = P1; |
---|
| 3750 | P1 = P0; |
---|
| 3751 | P0 = Pt; |
---|
| 3752 | } |
---|
| 3753 | |
---|
| 3754 | return unpredictable_count; |
---|
| 3755 | } |
---|
| 3756 | |
---|
| 3757 | unsigned int optimize_intervals_float_2D_opt(float *oriData, size_t r1, size_t r2, double realPrecision) |
---|
| 3758 | { |
---|
| 3759 | size_t i; |
---|
| 3760 | size_t radiusIndex; |
---|
| 3761 | float pred_value = 0, pred_err; |
---|
| 3762 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 3763 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
[9ee2ce3] | 3764 | size_t totalSampleSize = 0; |
---|
[2c47b73] | 3765 | |
---|
| 3766 | size_t offset_count = confparams_cpr->sampleDistance - 1; // count r2 offset |
---|
| 3767 | size_t offset_count_2; |
---|
| 3768 | float * data_pos = oriData + r2 + offset_count; |
---|
| 3769 | size_t n1_count = 1; // count i sum |
---|
| 3770 | size_t len = r1 * r2; |
---|
| 3771 | while(data_pos - oriData < len){ |
---|
| 3772 | totalSampleSize++; |
---|
| 3773 | pred_value = data_pos[-1] + data_pos[-r2] - data_pos[-r2-1]; |
---|
| 3774 | pred_err = fabs(pred_value - *data_pos); |
---|
| 3775 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 3776 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 3777 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 3778 | intervals[radiusIndex]++; |
---|
| 3779 | |
---|
| 3780 | offset_count += confparams_cpr->sampleDistance; |
---|
| 3781 | if(offset_count >= r2){ |
---|
| 3782 | n1_count ++; |
---|
| 3783 | offset_count_2 = n1_count % confparams_cpr->sampleDistance; |
---|
| 3784 | data_pos += (r2 + confparams_cpr->sampleDistance - offset_count) + (confparams_cpr->sampleDistance - offset_count_2); |
---|
| 3785 | offset_count = (confparams_cpr->sampleDistance - offset_count_2); |
---|
| 3786 | if(offset_count == 0) offset_count ++; |
---|
| 3787 | } |
---|
| 3788 | else data_pos += confparams_cpr->sampleDistance; |
---|
| 3789 | } |
---|
| 3790 | |
---|
| 3791 | //compute the appropriate number |
---|
| 3792 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 3793 | size_t sum = 0; |
---|
| 3794 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 3795 | { |
---|
| 3796 | sum += intervals[i]; |
---|
| 3797 | if(sum>targetCount) |
---|
| 3798 | break; |
---|
| 3799 | } |
---|
| 3800 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 3801 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 3802 | unsigned int accIntervals = 2*(i+1); |
---|
| 3803 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 3804 | |
---|
| 3805 | if(powerOf2<32) |
---|
| 3806 | powerOf2 = 32; |
---|
| 3807 | |
---|
| 3808 | free(intervals); |
---|
| 3809 | return powerOf2; |
---|
| 3810 | } |
---|
| 3811 | |
---|
| 3812 | unsigned int optimize_intervals_float_1D_opt(float *oriData, size_t dataLength, double realPrecision) |
---|
| 3813 | { |
---|
| 3814 | size_t i = 0, radiusIndex; |
---|
| 3815 | float pred_value = 0, pred_err; |
---|
| 3816 | size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 3817 | memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t)); |
---|
| 3818 | size_t totalSampleSize = 0;//dataLength/confparams_cpr->sampleDistance; |
---|
| 3819 | |
---|
| 3820 | float * data_pos = oriData + 2; |
---|
| 3821 | while(data_pos - oriData < dataLength){ |
---|
| 3822 | totalSampleSize++; |
---|
| 3823 | pred_value = data_pos[-1]; |
---|
| 3824 | pred_err = fabs(pred_value - *data_pos); |
---|
| 3825 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 3826 | if(radiusIndex>=confparams_cpr->maxRangeRadius) |
---|
| 3827 | radiusIndex = confparams_cpr->maxRangeRadius - 1; |
---|
| 3828 | intervals[radiusIndex]++; |
---|
| 3829 | |
---|
| 3830 | data_pos += confparams_cpr->sampleDistance; |
---|
| 3831 | } |
---|
| 3832 | //compute the appropriate number |
---|
| 3833 | size_t targetCount = totalSampleSize*confparams_cpr->predThreshold; |
---|
| 3834 | size_t sum = 0; |
---|
| 3835 | for(i=0;i<confparams_cpr->maxRangeRadius;i++) |
---|
| 3836 | { |
---|
| 3837 | sum += intervals[i]; |
---|
| 3838 | if(sum>targetCount) |
---|
| 3839 | break; |
---|
| 3840 | } |
---|
| 3841 | if(i>=confparams_cpr->maxRangeRadius) |
---|
| 3842 | i = confparams_cpr->maxRangeRadius-1; |
---|
| 3843 | |
---|
| 3844 | unsigned int accIntervals = 2*(i+1); |
---|
| 3845 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 3846 | |
---|
| 3847 | if(powerOf2<32) |
---|
| 3848 | powerOf2 = 32; |
---|
| 3849 | |
---|
| 3850 | free(intervals); |
---|
| 3851 | return powerOf2; |
---|
| 3852 | } |
---|
| 3853 | |
---|
| 3854 | size_t SZ_compress_float_1D_MDQ_RA_block(float * block_ori_data, float * mean, size_t dim_0, size_t block_dim_0, double realPrecision, int * type, float * unpredictable_data){ |
---|
| 3855 | |
---|
| 3856 | mean[0] = block_ori_data[0]; |
---|
| 3857 | unsigned short unpredictable_count = 0; |
---|
| 3858 | |
---|
| 3859 | float curData; |
---|
| 3860 | double itvNum; |
---|
| 3861 | double diff; |
---|
| 3862 | float last_over_thres = mean[0]; |
---|
| 3863 | float pred1D; |
---|
| 3864 | size_t type_index = 0; |
---|
| 3865 | float * data_pos = block_ori_data; |
---|
| 3866 | for(size_t i=0; i<block_dim_0; i++){ |
---|
| 3867 | curData = *data_pos; |
---|
| 3868 | |
---|
| 3869 | pred1D = last_over_thres; |
---|
| 3870 | diff = curData - pred1D; |
---|
| 3871 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3872 | if (itvNum < exe_params->intvCapacity){ |
---|
| 3873 | if (diff < 0) itvNum = -itvNum; |
---|
| 3874 | type[type_index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3875 | last_over_thres = pred1D + 2 * (type[type_index] - exe_params->intvRadius) * realPrecision; |
---|
| 3876 | if(fabs(curData-last_over_thres)>realPrecision){ |
---|
| 3877 | type[type_index] = 0; |
---|
| 3878 | last_over_thres = curData; |
---|
| 3879 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3880 | } |
---|
| 3881 | |
---|
| 3882 | } |
---|
| 3883 | else{ |
---|
| 3884 | type[type_index] = 0; |
---|
| 3885 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3886 | last_over_thres = curData; |
---|
| 3887 | } |
---|
| 3888 | type_index ++; |
---|
| 3889 | data_pos ++; |
---|
| 3890 | } |
---|
| 3891 | return unpredictable_count; |
---|
| 3892 | |
---|
| 3893 | } |
---|
| 3894 | |
---|
| 3895 | size_t SZ_compress_float_2D_MDQ_RA_block(float * block_ori_data, float * mean, size_t dim_0, size_t dim_1, size_t block_dim_0, size_t block_dim_1, double realPrecision, float * P0, float * P1, int * type, float * unpredictable_data){ |
---|
| 3896 | |
---|
| 3897 | size_t dim0_offset = dim_1; |
---|
| 3898 | mean[0] = block_ori_data[0]; |
---|
| 3899 | |
---|
| 3900 | size_t unpredictable_count = 0; |
---|
| 3901 | size_t r1, r2; |
---|
| 3902 | r1 = block_dim_0; |
---|
| 3903 | r2 = block_dim_1; |
---|
| 3904 | |
---|
| 3905 | float * cur_data_pos = block_ori_data; |
---|
| 3906 | float curData; |
---|
| 3907 | float pred1D, pred2D; |
---|
| 3908 | double itvNum; |
---|
| 3909 | double diff; |
---|
| 3910 | size_t i, j; |
---|
| 3911 | /* Process Row-0 data 0*/ |
---|
| 3912 | curData = *cur_data_pos; |
---|
| 3913 | pred1D = mean[0]; |
---|
| 3914 | diff = curData - pred1D; |
---|
| 3915 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3916 | if (itvNum < exe_params->intvCapacity){ |
---|
| 3917 | if (diff < 0) itvNum = -itvNum; |
---|
| 3918 | type[0] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3919 | P1[0] = pred1D + 2 * (type[0] - exe_params->intvRadius) * realPrecision; |
---|
| 3920 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3921 | if(fabs(curData-P1[0])>realPrecision){ |
---|
| 3922 | type[0] = 0; |
---|
| 3923 | P1[0] = curData; |
---|
| 3924 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3925 | } |
---|
| 3926 | } |
---|
| 3927 | else{ |
---|
| 3928 | type[0] = 0; |
---|
| 3929 | P1[0] = curData; |
---|
| 3930 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3931 | } |
---|
| 3932 | |
---|
| 3933 | /* Process Row-0 data 1*/ |
---|
| 3934 | curData = cur_data_pos[1]; |
---|
| 3935 | pred1D = P1[0]; |
---|
| 3936 | diff = curData - pred1D; |
---|
| 3937 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3938 | if (itvNum < exe_params->intvCapacity){ |
---|
| 3939 | if (diff < 0) itvNum = -itvNum; |
---|
| 3940 | type[1] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3941 | P1[1] = pred1D + 2 * (type[1] - exe_params->intvRadius) * realPrecision; |
---|
| 3942 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3943 | if(fabs(curData-P1[1])>realPrecision){ |
---|
| 3944 | type[1] = 0; |
---|
| 3945 | P1[1] = curData; |
---|
| 3946 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3947 | } |
---|
| 3948 | } |
---|
| 3949 | else{ |
---|
| 3950 | type[1] = 0; |
---|
| 3951 | P1[1] = curData; |
---|
| 3952 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3953 | } |
---|
| 3954 | |
---|
| 3955 | /* Process Row-0 data 2 --> data r2-1 */ |
---|
| 3956 | for (j = 2; j < r2; j++) |
---|
| 3957 | { |
---|
| 3958 | curData = cur_data_pos[j]; |
---|
| 3959 | pred1D = 2*P1[j-1] - P1[j-2]; |
---|
| 3960 | diff = curData - pred1D; |
---|
| 3961 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3962 | if (itvNum < exe_params->intvCapacity){ |
---|
| 3963 | if (diff < 0) itvNum = -itvNum; |
---|
| 3964 | type[j] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3965 | P1[j] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
| 3966 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3967 | if(fabs(curData-P1[j])>realPrecision){ |
---|
| 3968 | type[j] = 0; |
---|
| 3969 | P1[j] = curData; |
---|
| 3970 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3971 | } |
---|
| 3972 | } |
---|
| 3973 | else{ |
---|
| 3974 | type[j] = 0; |
---|
| 3975 | P1[j] = curData; |
---|
| 3976 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3977 | } |
---|
| 3978 | } |
---|
| 3979 | cur_data_pos += dim0_offset; |
---|
| 3980 | /* Process Row-1 --> Row-r1-1 */ |
---|
| 3981 | size_t index; |
---|
| 3982 | for (i = 1; i < r1; i++) |
---|
| 3983 | { |
---|
| 3984 | /* Process row-i data 0 */ |
---|
| 3985 | index = i*r2; |
---|
| 3986 | curData = *cur_data_pos; |
---|
| 3987 | pred1D = P1[0]; |
---|
| 3988 | diff = curData - pred1D; |
---|
| 3989 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 3990 | if (itvNum < exe_params->intvCapacity){ |
---|
| 3991 | if (diff < 0) itvNum = -itvNum; |
---|
| 3992 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 3993 | P0[0] = pred1D + 2 * (type[j] - exe_params->intvRadius) * realPrecision; |
---|
| 3994 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 3995 | if(fabs(curData-P0[0])>realPrecision){ |
---|
| 3996 | type[index] = 0; |
---|
| 3997 | P0[0] = curData; |
---|
| 3998 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 3999 | } |
---|
| 4000 | } |
---|
| 4001 | else{ |
---|
| 4002 | type[index] = 0; |
---|
| 4003 | P0[0] = curData; |
---|
| 4004 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4005 | } |
---|
| 4006 | |
---|
| 4007 | /* Process row-i data 1 --> r2-1*/ |
---|
| 4008 | for (j = 1; j < r2; j++) |
---|
| 4009 | { |
---|
| 4010 | index = i*r2+j; |
---|
| 4011 | curData = cur_data_pos[j]; |
---|
| 4012 | pred2D = P0[j-1] + P1[j] - P1[j-1]; |
---|
| 4013 | diff = curData - pred2D; |
---|
| 4014 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4015 | if (itvNum < exe_params->intvCapacity) |
---|
| 4016 | { |
---|
| 4017 | if (diff < 0) itvNum = -itvNum; |
---|
| 4018 | type[index] = (int) (itvNum/2) + exe_params->intvRadius; |
---|
| 4019 | P0[j] = pred2D + 2 * (type[index] - exe_params->intvRadius) * realPrecision; |
---|
| 4020 | |
---|
| 4021 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4022 | if(fabs(curData-P0[j])>realPrecision) |
---|
| 4023 | { |
---|
| 4024 | type[index] = 0; |
---|
| 4025 | P0[j] = curData; |
---|
| 4026 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4027 | } |
---|
| 4028 | } |
---|
| 4029 | else |
---|
| 4030 | { |
---|
| 4031 | type[index] = 0; |
---|
| 4032 | P0[j] = curData; |
---|
| 4033 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4034 | } |
---|
| 4035 | } |
---|
| 4036 | cur_data_pos += dim0_offset; |
---|
| 4037 | |
---|
| 4038 | float *Pt; |
---|
| 4039 | Pt = P1; |
---|
| 4040 | P1 = P0; |
---|
| 4041 | P0 = Pt; |
---|
| 4042 | } |
---|
| 4043 | return unpredictable_count; |
---|
| 4044 | } |
---|
| 4045 | |
---|
[9ee2ce3] | 4046 | /*The above code is for sz 1.4.13; the following code is for sz 2.0*/ |
---|
| 4047 | |
---|
| 4048 | unsigned int optimize_intervals_float_2D_with_freq_and_dense_pos(float *oriData, size_t r1, size_t r2, double realPrecision, float * dense_pos, float * max_freq, float * mean_freq) |
---|
| 4049 | { |
---|
| 4050 | float mean = 0.0; |
---|
| 4051 | size_t len = r1 * r2; |
---|
| 4052 | size_t mean_distance = (int) (sqrt(len)); |
---|
| 4053 | |
---|
| 4054 | float * data_pos = oriData; |
---|
| 4055 | size_t mean_count = 0; |
---|
| 4056 | while(data_pos - oriData < len){ |
---|
| 4057 | mean += *data_pos; |
---|
| 4058 | mean_count ++; |
---|
| 4059 | data_pos += mean_distance; |
---|
| 4060 | } |
---|
| 4061 | if(mean_count > 0) mean /= mean_count; |
---|
| 4062 | size_t range = 8192; |
---|
| 4063 | size_t radius = 4096; |
---|
| 4064 | size_t * freq_intervals = (size_t *) malloc(range*sizeof(size_t)); |
---|
| 4065 | memset(freq_intervals, 0, range*sizeof(size_t)); |
---|
| 4066 | |
---|
| 4067 | unsigned int maxRangeRadius = confparams_cpr->maxRangeRadius; |
---|
| 4068 | int sampleDistance = confparams_cpr->sampleDistance; |
---|
| 4069 | float predThreshold = confparams_cpr->predThreshold; |
---|
| 4070 | |
---|
| 4071 | size_t i; |
---|
| 4072 | size_t radiusIndex; |
---|
| 4073 | float pred_value = 0, pred_err; |
---|
| 4074 | size_t *intervals = (size_t*)malloc(maxRangeRadius*sizeof(size_t)); |
---|
| 4075 | memset(intervals, 0, maxRangeRadius*sizeof(size_t)); |
---|
| 4076 | |
---|
| 4077 | float mean_diff; |
---|
| 4078 | ptrdiff_t freq_index; |
---|
| 4079 | size_t freq_count = 0; |
---|
| 4080 | size_t n1_count = 1; |
---|
| 4081 | size_t offset_count = sampleDistance - 1; |
---|
| 4082 | size_t offset_count_2 = 0; |
---|
| 4083 | size_t sample_count = 0; |
---|
| 4084 | data_pos = oriData + r2 + offset_count; |
---|
| 4085 | while(data_pos - oriData < len){ |
---|
| 4086 | pred_value = data_pos[-1] + data_pos[-r2] - data_pos[-r2-1]; |
---|
| 4087 | pred_err = fabs(pred_value - *data_pos); |
---|
| 4088 | if(pred_err < realPrecision) freq_count ++; |
---|
| 4089 | radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2); |
---|
| 4090 | if(radiusIndex>=maxRangeRadius) |
---|
| 4091 | radiusIndex = maxRangeRadius - 1; |
---|
| 4092 | intervals[radiusIndex]++; |
---|
| 4093 | |
---|
| 4094 | mean_diff = *data_pos - mean; |
---|
| 4095 | if(mean_diff > 0) freq_index = (ptrdiff_t)(mean_diff/realPrecision) + radius; |
---|
| 4096 | else freq_index = (ptrdiff_t)(mean_diff/realPrecision) - 1 + radius; |
---|
| 4097 | if(freq_index <= 0){ |
---|
| 4098 | freq_intervals[0] ++; |
---|
| 4099 | } |
---|
| 4100 | else if(freq_index >= range){ |
---|
| 4101 | freq_intervals[range - 1] ++; |
---|
| 4102 | } |
---|
| 4103 | else{ |
---|
| 4104 | freq_intervals[freq_index] ++; |
---|
| 4105 | } |
---|
| 4106 | offset_count += sampleDistance; |
---|
| 4107 | if(offset_count >= r2){ |
---|
| 4108 | n1_count ++; |
---|
| 4109 | offset_count_2 = n1_count % sampleDistance; |
---|
| 4110 | data_pos += (r2 + sampleDistance - offset_count) + (sampleDistance - offset_count_2); |
---|
| 4111 | offset_count = (sampleDistance - offset_count_2); |
---|
| 4112 | if(offset_count == 0) offset_count ++; |
---|
| 4113 | } |
---|
| 4114 | else data_pos += sampleDistance; |
---|
| 4115 | sample_count ++; |
---|
| 4116 | } |
---|
| 4117 | *max_freq = freq_count * 1.0/ sample_count; |
---|
| 4118 | |
---|
| 4119 | //compute the appropriate number |
---|
| 4120 | size_t targetCount = sample_count*predThreshold; |
---|
| 4121 | size_t sum = 0; |
---|
| 4122 | for(i=0;i<maxRangeRadius;i++) |
---|
| 4123 | { |
---|
| 4124 | sum += intervals[i]; |
---|
| 4125 | if(sum>targetCount) |
---|
| 4126 | break; |
---|
| 4127 | } |
---|
| 4128 | if(i>=maxRangeRadius) |
---|
| 4129 | i = maxRangeRadius-1; |
---|
| 4130 | unsigned int accIntervals = 2*(i+1); |
---|
| 4131 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 4132 | |
---|
| 4133 | if(powerOf2<32) |
---|
| 4134 | powerOf2 = 32; |
---|
| 4135 | |
---|
| 4136 | // collect frequency |
---|
| 4137 | size_t max_sum = 0; |
---|
| 4138 | size_t max_index = 0; |
---|
| 4139 | size_t tmp_sum; |
---|
| 4140 | size_t * freq_pos = freq_intervals + 1; |
---|
| 4141 | for(size_t i=1; i<range-2; i++){ |
---|
| 4142 | tmp_sum = freq_pos[0] + freq_pos[1]; |
---|
| 4143 | if(tmp_sum > max_sum){ |
---|
| 4144 | max_sum = tmp_sum; |
---|
| 4145 | max_index = i; |
---|
| 4146 | } |
---|
| 4147 | freq_pos ++; |
---|
| 4148 | } |
---|
| 4149 | *dense_pos = mean + realPrecision * (ptrdiff_t)(max_index + 1 - radius); |
---|
| 4150 | *mean_freq = max_sum * 1.0 / sample_count; |
---|
| 4151 | |
---|
| 4152 | free(freq_intervals); |
---|
| 4153 | free(intervals); |
---|
| 4154 | return powerOf2; |
---|
| 4155 | } |
---|
| 4156 | |
---|
| 4157 | // 2D: modified for higher performance |
---|
| 4158 | #define MIN(a, b) a<b? a : b |
---|
| 4159 | unsigned char * SZ_compress_float_2D_MDQ_nonblocked_with_blocked_regression(float *oriData, size_t r1, size_t r2, double realPrecision, size_t * comp_size){ |
---|
| 4160 | |
---|
| 4161 | unsigned int quantization_intervals; |
---|
| 4162 | float sz_sample_correct_freq = -1;//0.5; //-1 |
---|
| 4163 | float dense_pos; |
---|
| 4164 | float mean_flush_freq; |
---|
| 4165 | unsigned char use_mean = 0; |
---|
| 4166 | |
---|
| 4167 | if(exe_params->optQuantMode==1) |
---|
| 4168 | { |
---|
| 4169 | quantization_intervals = optimize_intervals_float_2D_with_freq_and_dense_pos(oriData, r1, r2, realPrecision, &dense_pos, &sz_sample_correct_freq, &mean_flush_freq); |
---|
| 4170 | if(mean_flush_freq > 0.5 || mean_flush_freq > sz_sample_correct_freq) use_mean = 1; |
---|
| 4171 | updateQuantizationInfo(quantization_intervals); |
---|
| 4172 | } |
---|
| 4173 | else{ |
---|
| 4174 | quantization_intervals = exe_params->intvCapacity; |
---|
| 4175 | } |
---|
| 4176 | |
---|
| 4177 | // calculate block dims |
---|
| 4178 | size_t num_x, num_y; |
---|
| 4179 | size_t block_size = 16; |
---|
| 4180 | |
---|
| 4181 | SZ_COMPUTE_2D_NUMBER_OF_BLOCKS(r1, num_x, block_size); |
---|
| 4182 | SZ_COMPUTE_2D_NUMBER_OF_BLOCKS(r2, num_y, block_size); |
---|
| 4183 | |
---|
| 4184 | size_t split_index_x, split_index_y; |
---|
| 4185 | size_t early_blockcount_x, early_blockcount_y; |
---|
| 4186 | size_t late_blockcount_x, late_blockcount_y; |
---|
| 4187 | SZ_COMPUTE_BLOCKCOUNT(r1, num_x, split_index_x, early_blockcount_x, late_blockcount_x); |
---|
| 4188 | SZ_COMPUTE_BLOCKCOUNT(r2, num_y, split_index_y, early_blockcount_y, late_blockcount_y); |
---|
| 4189 | |
---|
| 4190 | size_t max_num_block_elements = early_blockcount_x * early_blockcount_y; |
---|
| 4191 | size_t num_blocks = num_x * num_y; |
---|
| 4192 | size_t num_elements = r1 * r2; |
---|
| 4193 | |
---|
| 4194 | size_t dim0_offset = r2; |
---|
| 4195 | |
---|
| 4196 | int * result_type = (int *) malloc(num_elements * sizeof(int)); |
---|
| 4197 | size_t unpred_data_max_size = max_num_block_elements; |
---|
| 4198 | float * result_unpredictable_data = (float *) malloc(unpred_data_max_size * sizeof(float) * num_blocks); |
---|
| 4199 | size_t total_unpred = 0; |
---|
| 4200 | size_t unpredictable_count; |
---|
| 4201 | float * data_pos = oriData; |
---|
| 4202 | int * type = result_type; |
---|
| 4203 | size_t offset_x, offset_y; |
---|
| 4204 | size_t current_blockcount_x, current_blockcount_y; |
---|
| 4205 | |
---|
| 4206 | float * reg_params = (float *) malloc(num_blocks * 4 * sizeof(float)); |
---|
| 4207 | float * reg_params_pos = reg_params; |
---|
| 4208 | // move regression part out |
---|
| 4209 | size_t params_offset_b = num_blocks; |
---|
| 4210 | size_t params_offset_c = 2*num_blocks; |
---|
| 4211 | for(size_t i=0; i<num_x; i++){ |
---|
| 4212 | for(size_t j=0; j<num_y; j++){ |
---|
| 4213 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 4214 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 4215 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 4216 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 4217 | |
---|
| 4218 | data_pos = oriData + offset_x * dim0_offset + offset_y; |
---|
| 4219 | |
---|
| 4220 | { |
---|
| 4221 | float * cur_data_pos = data_pos; |
---|
| 4222 | float fx = 0.0; |
---|
| 4223 | float fy = 0.0; |
---|
| 4224 | float f = 0; |
---|
| 4225 | double sum_x; |
---|
| 4226 | float curData; |
---|
| 4227 | for(size_t i=0; i<current_blockcount_x; i++){ |
---|
| 4228 | sum_x = 0; |
---|
| 4229 | for(size_t j=0; j<current_blockcount_y; j++){ |
---|
| 4230 | curData = *cur_data_pos; |
---|
| 4231 | sum_x += curData; |
---|
| 4232 | fy += curData * j; |
---|
| 4233 | cur_data_pos ++; |
---|
| 4234 | } |
---|
| 4235 | fx += sum_x * i; |
---|
| 4236 | f += sum_x; |
---|
| 4237 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
| 4238 | } |
---|
| 4239 | float coeff = 1.0 / (current_blockcount_x * current_blockcount_y); |
---|
| 4240 | reg_params_pos[0] = (2 * fx / (current_blockcount_x - 1) - f) * 6 * coeff / (current_blockcount_x + 1); |
---|
| 4241 | reg_params_pos[params_offset_b] = (2 * fy / (current_blockcount_y - 1) - f) * 6 * coeff / (current_blockcount_y + 1); |
---|
| 4242 | reg_params_pos[params_offset_c] = f * coeff - ((current_blockcount_x - 1) * reg_params_pos[0] / 2 + (current_blockcount_y - 1) * reg_params_pos[params_offset_b] / 2); |
---|
| 4243 | } |
---|
| 4244 | |
---|
| 4245 | reg_params_pos ++; |
---|
| 4246 | } |
---|
| 4247 | } |
---|
| 4248 | |
---|
| 4249 | //Compress coefficient arrays |
---|
| 4250 | double precision_a, precision_b, precision_c; |
---|
| 4251 | float rel_param_err = 0.15/3; |
---|
| 4252 | precision_a = rel_param_err * realPrecision / late_blockcount_x; |
---|
| 4253 | precision_b = rel_param_err * realPrecision / late_blockcount_y; |
---|
| 4254 | precision_c = rel_param_err * realPrecision; |
---|
| 4255 | |
---|
| 4256 | float mean = 0; |
---|
| 4257 | use_mean = 0; |
---|
| 4258 | if(use_mean){ |
---|
| 4259 | // compute mean |
---|
| 4260 | double sum = 0.0; |
---|
| 4261 | size_t mean_count = 0; |
---|
| 4262 | for(size_t i=0; i<num_elements; i++){ |
---|
| 4263 | if(fabs(oriData[i] - dense_pos) < realPrecision){ |
---|
| 4264 | sum += oriData[i]; |
---|
| 4265 | mean_count ++; |
---|
| 4266 | } |
---|
| 4267 | } |
---|
| 4268 | if(mean_count > 0) mean = sum / mean_count; |
---|
| 4269 | } |
---|
| 4270 | |
---|
| 4271 | |
---|
| 4272 | double tmp_realPrecision = realPrecision; |
---|
| 4273 | |
---|
| 4274 | // use two prediction buffers for higher performance |
---|
| 4275 | float * unpredictable_data = result_unpredictable_data; |
---|
| 4276 | unsigned char * indicator = (unsigned char *) malloc(num_blocks * sizeof(unsigned char)); |
---|
| 4277 | memset(indicator, 0, num_blocks * sizeof(unsigned char)); |
---|
| 4278 | size_t reg_count = 0; |
---|
| 4279 | size_t strip_dim_0 = early_blockcount_x + 1; |
---|
| 4280 | size_t strip_dim_1 = r2 + 1; |
---|
| 4281 | size_t strip_dim0_offset = strip_dim_1; |
---|
| 4282 | unsigned char * indicator_pos = indicator; |
---|
| 4283 | size_t prediction_buffer_size = strip_dim_0 * strip_dim0_offset * sizeof(float); |
---|
| 4284 | float * prediction_buffer_1 = (float *) malloc(prediction_buffer_size); |
---|
| 4285 | memset(prediction_buffer_1, 0, prediction_buffer_size); |
---|
| 4286 | float * prediction_buffer_2 = (float *) malloc(prediction_buffer_size); |
---|
| 4287 | memset(prediction_buffer_2, 0, prediction_buffer_size); |
---|
| 4288 | float * cur_pb_buf = prediction_buffer_1; |
---|
| 4289 | float * next_pb_buf = prediction_buffer_2; |
---|
| 4290 | float * cur_pb_buf_pos; |
---|
| 4291 | float * next_pb_buf_pos; |
---|
| 4292 | int intvCapacity = exe_params->intvCapacity; |
---|
| 4293 | int intvRadius = exe_params->intvRadius; |
---|
| 4294 | int use_reg = 0; |
---|
| 4295 | |
---|
| 4296 | reg_params_pos = reg_params; |
---|
| 4297 | // compress the regression coefficients on the fly |
---|
| 4298 | float last_coeffcients[3] = {0.0}; |
---|
| 4299 | int coeff_intvCapacity_sz = 65536; |
---|
| 4300 | int coeff_intvRadius = coeff_intvCapacity_sz / 2; |
---|
| 4301 | int * coeff_type[3]; |
---|
| 4302 | int * coeff_result_type = (int *) malloc(num_blocks*3*sizeof(int)); |
---|
| 4303 | float * coeff_unpred_data[3]; |
---|
| 4304 | float * coeff_unpredictable_data = (float *) malloc(num_blocks*3*sizeof(float)); |
---|
| 4305 | double precision[3]; |
---|
| 4306 | precision[0] = precision_a, precision[1] = precision_b, precision[2] = precision_c; |
---|
| 4307 | for(int i=0; i<3; i++){ |
---|
| 4308 | coeff_type[i] = coeff_result_type + i * num_blocks; |
---|
| 4309 | coeff_unpred_data[i] = coeff_unpredictable_data + i * num_blocks; |
---|
| 4310 | } |
---|
| 4311 | int coeff_index = 0; |
---|
| 4312 | unsigned int coeff_unpredictable_count[3] = {0}; |
---|
| 4313 | if(use_mean){ |
---|
| 4314 | type = result_type; |
---|
| 4315 | int intvCapacity_sz = intvCapacity - 2; |
---|
| 4316 | for(size_t i=0; i<num_x; i++){ |
---|
| 4317 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 4318 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 4319 | data_pos = oriData + offset_x * dim0_offset; |
---|
| 4320 | |
---|
| 4321 | cur_pb_buf_pos = cur_pb_buf + strip_dim0_offset + 1; |
---|
| 4322 | next_pb_buf_pos = next_pb_buf + 1; |
---|
| 4323 | float * pb_pos = cur_pb_buf_pos; |
---|
| 4324 | float * next_pb_pos = next_pb_buf_pos; |
---|
| 4325 | |
---|
| 4326 | for(size_t j=0; j<num_y; j++){ |
---|
| 4327 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 4328 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 4329 | |
---|
| 4330 | /*sampling: decide which predictor to use (regression or lorenzo)*/ |
---|
| 4331 | { |
---|
| 4332 | float * cur_data_pos; |
---|
| 4333 | float curData; |
---|
| 4334 | float pred_reg, pred_sz; |
---|
| 4335 | float err_sz = 0.0, err_reg = 0.0; |
---|
| 4336 | // [1, 1] [3, 3] [5, 5] [7, 7] [9, 9] |
---|
| 4337 | // [1, 9] [3, 7] [7, 3] [9, 1] |
---|
| 4338 | int count = 0; |
---|
| 4339 | for(int i=1; i<current_blockcount_x; i+=2){ |
---|
| 4340 | cur_data_pos = data_pos + i * dim0_offset + i; |
---|
| 4341 | curData = *cur_data_pos; |
---|
| 4342 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
| 4343 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c]; |
---|
| 4344 | |
---|
| 4345 | err_sz += MIN(fabs(pred_sz - curData) + realPrecision*0.81, fabs(mean - curData)); |
---|
| 4346 | |
---|
| 4347 | err_reg += fabs(pred_reg - curData); |
---|
| 4348 | |
---|
| 4349 | cur_data_pos = data_pos + i * dim0_offset + (block_size - i); |
---|
| 4350 | curData = *cur_data_pos; |
---|
| 4351 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
| 4352 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * (block_size - i) + reg_params_pos[params_offset_c]; |
---|
| 4353 | err_sz += MIN(fabs(pred_sz - curData) + realPrecision*0.81, fabs(mean - curData)); |
---|
| 4354 | |
---|
| 4355 | err_reg += fabs(pred_reg - curData); |
---|
| 4356 | |
---|
| 4357 | count += 2; |
---|
| 4358 | } |
---|
| 4359 | |
---|
| 4360 | use_reg = (err_reg < err_sz); |
---|
| 4361 | } |
---|
| 4362 | if(use_reg) |
---|
| 4363 | { |
---|
| 4364 | { |
---|
| 4365 | /*predict coefficients in current block via previous reg_block*/ |
---|
| 4366 | float cur_coeff; |
---|
| 4367 | double diff, itvNum; |
---|
| 4368 | for(int e=0; e<3; e++){ |
---|
| 4369 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
| 4370 | diff = cur_coeff - last_coeffcients[e]; |
---|
| 4371 | itvNum = fabs(diff)/precision[e] + 1; |
---|
| 4372 | if (itvNum < coeff_intvCapacity_sz){ |
---|
| 4373 | if (diff < 0) itvNum = -itvNum; |
---|
| 4374 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
| 4375 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
| 4376 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4377 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
| 4378 | coeff_type[e][coeff_index] = 0; |
---|
| 4379 | last_coeffcients[e] = cur_coeff; |
---|
| 4380 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 4381 | } |
---|
| 4382 | } |
---|
| 4383 | else{ |
---|
| 4384 | coeff_type[e][coeff_index] = 0; |
---|
| 4385 | last_coeffcients[e] = cur_coeff; |
---|
| 4386 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 4387 | } |
---|
| 4388 | } |
---|
| 4389 | coeff_index ++; |
---|
| 4390 | } |
---|
| 4391 | float curData; |
---|
| 4392 | float pred; |
---|
| 4393 | double itvNum; |
---|
| 4394 | double diff; |
---|
| 4395 | size_t index = 0; |
---|
| 4396 | size_t block_unpredictable_count = 0; |
---|
| 4397 | float * cur_data_pos = data_pos; |
---|
| 4398 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 4399 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
| 4400 | curData = *cur_data_pos; |
---|
| 4401 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4402 | diff = curData - pred; |
---|
| 4403 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4404 | if (itvNum < intvCapacity){ |
---|
| 4405 | if (diff < 0) itvNum = -itvNum; |
---|
| 4406 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4407 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4408 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4409 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4410 | type[index] = 0; |
---|
| 4411 | pred = curData; |
---|
| 4412 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4413 | } |
---|
| 4414 | } |
---|
| 4415 | else{ |
---|
| 4416 | type[index] = 0; |
---|
| 4417 | pred = curData; |
---|
| 4418 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4419 | } |
---|
| 4420 | index ++; |
---|
| 4421 | cur_data_pos ++; |
---|
| 4422 | } |
---|
| 4423 | /*dealing with the last jj (boundary)*/ |
---|
| 4424 | { |
---|
| 4425 | size_t jj = current_blockcount_y - 1; |
---|
| 4426 | curData = *cur_data_pos; |
---|
| 4427 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4428 | diff = curData - pred; |
---|
| 4429 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4430 | if (itvNum < intvCapacity){ |
---|
| 4431 | if (diff < 0) itvNum = -itvNum; |
---|
| 4432 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4433 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4434 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4435 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4436 | type[index] = 0; |
---|
| 4437 | pred = curData; |
---|
| 4438 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4439 | } |
---|
| 4440 | } |
---|
| 4441 | else{ |
---|
| 4442 | type[index] = 0; |
---|
| 4443 | pred = curData; |
---|
| 4444 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4445 | } |
---|
| 4446 | |
---|
| 4447 | // assign value to block surfaces |
---|
| 4448 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
| 4449 | index ++; |
---|
| 4450 | cur_data_pos ++; |
---|
| 4451 | } |
---|
| 4452 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
| 4453 | } |
---|
| 4454 | /*dealing with the last ii (boundary)*/ |
---|
| 4455 | { |
---|
| 4456 | size_t ii = current_blockcount_x - 1; |
---|
| 4457 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
| 4458 | curData = *cur_data_pos; |
---|
| 4459 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4460 | diff = curData - pred; |
---|
| 4461 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4462 | if (itvNum < intvCapacity){ |
---|
| 4463 | if (diff < 0) itvNum = -itvNum; |
---|
| 4464 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4465 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4466 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4467 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4468 | type[index] = 0; |
---|
| 4469 | pred = curData; |
---|
| 4470 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4471 | } |
---|
| 4472 | } |
---|
| 4473 | else{ |
---|
| 4474 | type[index] = 0; |
---|
| 4475 | pred = curData; |
---|
| 4476 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4477 | } |
---|
| 4478 | // assign value to next prediction buffer |
---|
| 4479 | next_pb_pos[jj] = pred; |
---|
| 4480 | index ++; |
---|
| 4481 | cur_data_pos ++; |
---|
| 4482 | } |
---|
| 4483 | /*dealing with the last jj (boundary)*/ |
---|
| 4484 | { |
---|
| 4485 | size_t jj = current_blockcount_y - 1; |
---|
| 4486 | curData = *cur_data_pos; |
---|
| 4487 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4488 | diff = curData - pred; |
---|
| 4489 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4490 | if (itvNum < intvCapacity){ |
---|
| 4491 | if (diff < 0) itvNum = -itvNum; |
---|
| 4492 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4493 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4494 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4495 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4496 | type[index] = 0; |
---|
| 4497 | pred = curData; |
---|
| 4498 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4499 | } |
---|
| 4500 | } |
---|
| 4501 | else{ |
---|
| 4502 | type[index] = 0; |
---|
| 4503 | pred = curData; |
---|
| 4504 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4505 | } |
---|
| 4506 | |
---|
| 4507 | // assign value to block surfaces |
---|
| 4508 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
| 4509 | // assign value to next prediction buffer |
---|
| 4510 | next_pb_pos[jj] = pred; |
---|
| 4511 | |
---|
| 4512 | index ++; |
---|
| 4513 | cur_data_pos ++; |
---|
| 4514 | } |
---|
| 4515 | } // end ii == -1 |
---|
| 4516 | unpredictable_count = block_unpredictable_count; |
---|
| 4517 | total_unpred += unpredictable_count; |
---|
| 4518 | unpredictable_data += unpredictable_count; |
---|
| 4519 | reg_count ++; |
---|
| 4520 | }// end use_reg |
---|
| 4521 | else{ |
---|
| 4522 | // use SZ |
---|
| 4523 | // SZ predication |
---|
| 4524 | unpredictable_count = 0; |
---|
| 4525 | float * cur_pb_pos = pb_pos; |
---|
| 4526 | float * cur_data_pos = data_pos; |
---|
| 4527 | float curData; |
---|
| 4528 | float pred2D; |
---|
| 4529 | double itvNum, diff; |
---|
| 4530 | size_t index = 0; |
---|
| 4531 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 4532 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 4533 | curData = *cur_data_pos; |
---|
| 4534 | if(fabs(curData - mean) <= realPrecision){ |
---|
| 4535 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
| 4536 | type[index] = intvRadius; |
---|
| 4537 | *cur_pb_pos = mean; |
---|
| 4538 | } |
---|
| 4539 | else |
---|
| 4540 | { |
---|
| 4541 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
| 4542 | diff = curData - pred2D; |
---|
| 4543 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4544 | if (itvNum < intvCapacity_sz){ |
---|
| 4545 | if (diff < 0) itvNum = -itvNum; |
---|
| 4546 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4547 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 4548 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
| 4549 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4550 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 4551 | type[index] = 0; |
---|
| 4552 | *cur_pb_pos = curData; |
---|
| 4553 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4554 | } |
---|
| 4555 | } |
---|
| 4556 | else{ |
---|
| 4557 | type[index] = 0; |
---|
| 4558 | *cur_pb_pos = curData; |
---|
| 4559 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4560 | } |
---|
| 4561 | } |
---|
| 4562 | index ++; |
---|
| 4563 | cur_pb_pos ++; |
---|
| 4564 | cur_data_pos ++; |
---|
| 4565 | } |
---|
| 4566 | cur_pb_pos += strip_dim0_offset - current_blockcount_y; |
---|
| 4567 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
| 4568 | } |
---|
| 4569 | /*dealing with the last ii (boundary)*/ |
---|
| 4570 | { |
---|
| 4571 | // ii == current_blockcount_x - 1 |
---|
| 4572 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 4573 | curData = *cur_data_pos; |
---|
| 4574 | if(fabs(curData - mean) <= realPrecision){ |
---|
| 4575 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
| 4576 | type[index] = intvRadius; |
---|
| 4577 | *cur_pb_pos = mean; |
---|
| 4578 | } |
---|
| 4579 | else |
---|
| 4580 | { |
---|
| 4581 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
| 4582 | diff = curData - pred2D; |
---|
| 4583 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4584 | if (itvNum < intvCapacity_sz){ |
---|
| 4585 | if (diff < 0) itvNum = -itvNum; |
---|
| 4586 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4587 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 4588 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
| 4589 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4590 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 4591 | type[index] = 0; |
---|
| 4592 | *cur_pb_pos = curData; |
---|
| 4593 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4594 | } |
---|
| 4595 | } |
---|
| 4596 | else{ |
---|
| 4597 | type[index] = 0; |
---|
| 4598 | *cur_pb_pos = curData; |
---|
| 4599 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4600 | } |
---|
| 4601 | } |
---|
| 4602 | next_pb_pos[jj] = *cur_pb_pos; |
---|
| 4603 | index ++; |
---|
| 4604 | cur_pb_pos ++; |
---|
| 4605 | cur_data_pos ++; |
---|
| 4606 | } |
---|
| 4607 | } |
---|
| 4608 | total_unpred += unpredictable_count; |
---|
| 4609 | unpredictable_data += unpredictable_count; |
---|
| 4610 | // change indicator |
---|
| 4611 | indicator_pos[j] = 1; |
---|
| 4612 | }// end SZ |
---|
| 4613 | reg_params_pos ++; |
---|
| 4614 | data_pos += current_blockcount_y; |
---|
| 4615 | pb_pos += current_blockcount_y; |
---|
| 4616 | next_pb_pos += current_blockcount_y; |
---|
| 4617 | type += current_blockcount_x * current_blockcount_y; |
---|
| 4618 | }// end j |
---|
| 4619 | indicator_pos += num_y; |
---|
| 4620 | float * tmp; |
---|
| 4621 | tmp = cur_pb_buf; |
---|
| 4622 | cur_pb_buf = next_pb_buf; |
---|
| 4623 | next_pb_buf = tmp; |
---|
| 4624 | }// end i |
---|
| 4625 | }// end use mean |
---|
| 4626 | else{ |
---|
| 4627 | type = result_type; |
---|
| 4628 | int intvCapacity_sz = intvCapacity - 2; |
---|
| 4629 | for(size_t i=0; i<num_x; i++){ |
---|
| 4630 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 4631 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 4632 | data_pos = oriData + offset_x * dim0_offset; |
---|
| 4633 | |
---|
| 4634 | cur_pb_buf_pos = cur_pb_buf + strip_dim0_offset + 1; |
---|
| 4635 | next_pb_buf_pos = next_pb_buf + 1; |
---|
| 4636 | float * pb_pos = cur_pb_buf_pos; |
---|
| 4637 | float * next_pb_pos = next_pb_buf_pos; |
---|
| 4638 | |
---|
| 4639 | for(size_t j=0; j<num_y; j++){ |
---|
| 4640 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 4641 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 4642 | /*sampling*/ |
---|
| 4643 | { |
---|
| 4644 | // sample [2i + 1, 2i + 1] [2i + 1, bs - 2i] |
---|
| 4645 | float * cur_data_pos; |
---|
| 4646 | float curData; |
---|
| 4647 | float pred_reg, pred_sz; |
---|
| 4648 | float err_sz = 0.0, err_reg = 0.0; |
---|
| 4649 | // [1, 1] [3, 3] [5, 5] [7, 7] [9, 9] |
---|
| 4650 | // [1, 9] [3, 7] [7, 3] [9, 1] |
---|
| 4651 | int count = 0; |
---|
| 4652 | for(int i=1; i<current_blockcount_x; i+=2){ |
---|
| 4653 | cur_data_pos = data_pos + i * dim0_offset + i; |
---|
| 4654 | curData = *cur_data_pos; |
---|
| 4655 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
| 4656 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c]; |
---|
| 4657 | err_sz += fabs(pred_sz - curData); |
---|
| 4658 | err_reg += fabs(pred_reg - curData); |
---|
| 4659 | |
---|
| 4660 | cur_data_pos = data_pos + i * dim0_offset + (block_size - i); |
---|
| 4661 | curData = *cur_data_pos; |
---|
| 4662 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim0_offset] - cur_data_pos[-dim0_offset - 1]; |
---|
| 4663 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * (block_size - i) + reg_params_pos[params_offset_c]; |
---|
| 4664 | err_sz += fabs(pred_sz - curData); |
---|
| 4665 | err_reg += fabs(pred_reg - curData); |
---|
| 4666 | |
---|
| 4667 | count += 2; |
---|
| 4668 | } |
---|
| 4669 | err_sz += realPrecision * count * 0.81; |
---|
| 4670 | use_reg = (err_reg < err_sz); |
---|
| 4671 | |
---|
| 4672 | } |
---|
| 4673 | if(use_reg) |
---|
| 4674 | { |
---|
| 4675 | { |
---|
| 4676 | /*predict coefficients in current block via previous reg_block*/ |
---|
| 4677 | float cur_coeff; |
---|
| 4678 | double diff, itvNum; |
---|
| 4679 | for(int e=0; e<3; e++){ |
---|
| 4680 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
| 4681 | diff = cur_coeff - last_coeffcients[e]; |
---|
| 4682 | itvNum = fabs(diff)/precision[e] + 1; |
---|
| 4683 | if (itvNum < coeff_intvCapacity_sz){ |
---|
| 4684 | if (diff < 0) itvNum = -itvNum; |
---|
| 4685 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
| 4686 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
| 4687 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4688 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
| 4689 | coeff_type[e][coeff_index] = 0; |
---|
| 4690 | last_coeffcients[e] = cur_coeff; |
---|
| 4691 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 4692 | } |
---|
| 4693 | } |
---|
| 4694 | else{ |
---|
| 4695 | coeff_type[e][coeff_index] = 0; |
---|
| 4696 | last_coeffcients[e] = cur_coeff; |
---|
| 4697 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 4698 | } |
---|
| 4699 | } |
---|
| 4700 | coeff_index ++; |
---|
| 4701 | } |
---|
| 4702 | float curData; |
---|
| 4703 | float pred; |
---|
| 4704 | double itvNum; |
---|
| 4705 | double diff; |
---|
| 4706 | size_t index = 0; |
---|
| 4707 | size_t block_unpredictable_count = 0; |
---|
| 4708 | float * cur_data_pos = data_pos; |
---|
| 4709 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 4710 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
| 4711 | curData = *cur_data_pos; |
---|
| 4712 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4713 | diff = curData - pred; |
---|
| 4714 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4715 | if (itvNum < intvCapacity){ |
---|
| 4716 | if (diff < 0) itvNum = -itvNum; |
---|
| 4717 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4718 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4719 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4720 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4721 | type[index] = 0; |
---|
| 4722 | pred = curData; |
---|
| 4723 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4724 | } |
---|
| 4725 | } |
---|
| 4726 | else{ |
---|
| 4727 | type[index] = 0; |
---|
| 4728 | pred = curData; |
---|
| 4729 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4730 | } |
---|
| 4731 | index ++; |
---|
| 4732 | cur_data_pos ++; |
---|
| 4733 | } |
---|
| 4734 | /*dealing with the last jj (boundary)*/ |
---|
| 4735 | { |
---|
| 4736 | // jj == current_blockcount_y - 1 |
---|
| 4737 | size_t jj = current_blockcount_y - 1; |
---|
| 4738 | curData = *cur_data_pos; |
---|
| 4739 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4740 | diff = curData - pred; |
---|
| 4741 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4742 | if (itvNum < intvCapacity){ |
---|
| 4743 | if (diff < 0) itvNum = -itvNum; |
---|
| 4744 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4745 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4746 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4747 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4748 | type[index] = 0; |
---|
| 4749 | pred = curData; |
---|
| 4750 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4751 | } |
---|
| 4752 | } |
---|
| 4753 | else{ |
---|
| 4754 | type[index] = 0; |
---|
| 4755 | pred = curData; |
---|
| 4756 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4757 | } |
---|
| 4758 | |
---|
| 4759 | // assign value to block surfaces |
---|
| 4760 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
| 4761 | index ++; |
---|
| 4762 | cur_data_pos ++; |
---|
| 4763 | } |
---|
| 4764 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
| 4765 | } |
---|
| 4766 | /*dealing with the last ii (boundary)*/ |
---|
| 4767 | { |
---|
| 4768 | size_t ii = current_blockcount_x - 1; |
---|
| 4769 | for(size_t jj=0; jj<current_blockcount_y - 1; jj++){ |
---|
| 4770 | curData = *cur_data_pos; |
---|
| 4771 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4772 | diff = curData - pred; |
---|
| 4773 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4774 | if (itvNum < intvCapacity){ |
---|
| 4775 | if (diff < 0) itvNum = -itvNum; |
---|
| 4776 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4777 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4778 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4779 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4780 | type[index] = 0; |
---|
| 4781 | pred = curData; |
---|
| 4782 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4783 | } |
---|
| 4784 | } |
---|
| 4785 | else{ |
---|
| 4786 | type[index] = 0; |
---|
| 4787 | pred = curData; |
---|
| 4788 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4789 | } |
---|
| 4790 | // assign value to next prediction buffer |
---|
| 4791 | next_pb_pos[jj] = pred; |
---|
| 4792 | index ++; |
---|
| 4793 | cur_data_pos ++; |
---|
| 4794 | } |
---|
| 4795 | /*dealing with the last jj (boundary)*/ |
---|
| 4796 | { |
---|
| 4797 | // jj == current_blockcount_y - 1 |
---|
| 4798 | size_t jj = current_blockcount_y - 1; |
---|
| 4799 | curData = *cur_data_pos; |
---|
| 4800 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2]; |
---|
| 4801 | diff = curData - pred; |
---|
| 4802 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4803 | if (itvNum < intvCapacity){ |
---|
| 4804 | if (diff < 0) itvNum = -itvNum; |
---|
| 4805 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4806 | pred = pred + 2 * (type[index] - intvRadius) * realPrecision; |
---|
| 4807 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4808 | if(fabs(curData - pred)>realPrecision){ |
---|
| 4809 | type[index] = 0; |
---|
| 4810 | pred = curData; |
---|
| 4811 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4812 | } |
---|
| 4813 | } |
---|
| 4814 | else{ |
---|
| 4815 | type[index] = 0; |
---|
| 4816 | pred = curData; |
---|
| 4817 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 4818 | } |
---|
| 4819 | |
---|
| 4820 | // assign value to block surfaces |
---|
| 4821 | pb_pos[ii * strip_dim0_offset + jj] = pred; |
---|
| 4822 | // assign value to next prediction buffer |
---|
| 4823 | next_pb_pos[jj] = pred; |
---|
| 4824 | |
---|
| 4825 | index ++; |
---|
| 4826 | cur_data_pos ++; |
---|
| 4827 | } |
---|
| 4828 | } // end ii == -1 |
---|
| 4829 | unpredictable_count = block_unpredictable_count; |
---|
| 4830 | total_unpred += unpredictable_count; |
---|
| 4831 | unpredictable_data += unpredictable_count; |
---|
| 4832 | reg_count ++; |
---|
| 4833 | }// end use_reg |
---|
| 4834 | else{ |
---|
| 4835 | // use SZ |
---|
| 4836 | // SZ predication |
---|
| 4837 | unpredictable_count = 0; |
---|
| 4838 | float * cur_pb_pos = pb_pos; |
---|
| 4839 | float * cur_data_pos = data_pos; |
---|
| 4840 | float curData; |
---|
| 4841 | float pred2D; |
---|
| 4842 | double itvNum, diff; |
---|
| 4843 | size_t index = 0; |
---|
| 4844 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 4845 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 4846 | curData = *cur_data_pos; |
---|
| 4847 | |
---|
| 4848 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
| 4849 | diff = curData - pred2D; |
---|
| 4850 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4851 | if (itvNum < intvCapacity_sz){ |
---|
| 4852 | if (diff < 0) itvNum = -itvNum; |
---|
| 4853 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4854 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 4855 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4856 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 4857 | type[index] = 0; |
---|
| 4858 | *cur_pb_pos = curData; |
---|
| 4859 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4860 | } |
---|
| 4861 | } |
---|
| 4862 | else{ |
---|
| 4863 | type[index] = 0; |
---|
| 4864 | *cur_pb_pos = curData; |
---|
| 4865 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4866 | } |
---|
| 4867 | |
---|
| 4868 | index ++; |
---|
| 4869 | cur_pb_pos ++; |
---|
| 4870 | cur_data_pos ++; |
---|
| 4871 | } |
---|
| 4872 | cur_pb_pos += strip_dim0_offset - current_blockcount_y; |
---|
| 4873 | cur_data_pos += dim0_offset - current_blockcount_y; |
---|
| 4874 | } |
---|
| 4875 | /*dealing with the last ii (boundary)*/ |
---|
| 4876 | { |
---|
| 4877 | // ii == current_blockcount_x - 1 |
---|
| 4878 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 4879 | curData = *cur_data_pos; |
---|
| 4880 | |
---|
| 4881 | pred2D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim0_offset - 1]; |
---|
| 4882 | diff = curData - pred2D; |
---|
| 4883 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 4884 | if (itvNum < intvCapacity_sz){ |
---|
| 4885 | if (diff < 0) itvNum = -itvNum; |
---|
| 4886 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 4887 | *cur_pb_pos = pred2D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 4888 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 4889 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 4890 | type[index] = 0; |
---|
| 4891 | *cur_pb_pos = curData; |
---|
| 4892 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4893 | } |
---|
| 4894 | } |
---|
| 4895 | else{ |
---|
| 4896 | type[index] = 0; |
---|
| 4897 | *cur_pb_pos = curData; |
---|
| 4898 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 4899 | } |
---|
| 4900 | next_pb_pos[jj] = *cur_pb_pos; |
---|
| 4901 | index ++; |
---|
| 4902 | cur_pb_pos ++; |
---|
| 4903 | cur_data_pos ++; |
---|
| 4904 | } |
---|
| 4905 | } |
---|
| 4906 | total_unpred += unpredictable_count; |
---|
| 4907 | unpredictable_data += unpredictable_count; |
---|
| 4908 | // change indicator |
---|
| 4909 | indicator_pos[j] = 1; |
---|
| 4910 | }// end SZ |
---|
| 4911 | reg_params_pos ++; |
---|
| 4912 | data_pos += current_blockcount_y; |
---|
| 4913 | pb_pos += current_blockcount_y; |
---|
| 4914 | next_pb_pos += current_blockcount_y; |
---|
| 4915 | type += current_blockcount_x * current_blockcount_y; |
---|
| 4916 | }// end j |
---|
| 4917 | indicator_pos += num_y; |
---|
| 4918 | float * tmp; |
---|
| 4919 | tmp = cur_pb_buf; |
---|
| 4920 | cur_pb_buf = next_pb_buf; |
---|
| 4921 | next_pb_buf = tmp; |
---|
| 4922 | }// end i |
---|
| 4923 | } |
---|
| 4924 | free(prediction_buffer_1); |
---|
| 4925 | free(prediction_buffer_2); |
---|
| 4926 | |
---|
| 4927 | int stateNum = 2*quantization_intervals; |
---|
| 4928 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
| 4929 | |
---|
| 4930 | size_t nodeCount = 0; |
---|
| 4931 | size_t i = 0; |
---|
| 4932 | init(huffmanTree, result_type, num_elements); |
---|
| 4933 | for (i = 0; i < stateNum; i++) |
---|
| 4934 | if (huffmanTree->code[i]) nodeCount++; |
---|
| 4935 | nodeCount = nodeCount*2-1; |
---|
| 4936 | |
---|
| 4937 | unsigned char *treeBytes; |
---|
| 4938 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
| 4939 | |
---|
| 4940 | unsigned int meta_data_offset = 3 + 1 + MetaDataByteLength; |
---|
| 4941 | // total size metadata # elements real precision intervals nodeCount huffman block index unpredicatable count mean unpred size elements |
---|
| 4942 | unsigned char * result = (unsigned char *) calloc(meta_data_offset + exe_params->SZ_SIZE_TYPE + sizeof(double) + sizeof(int) + sizeof(int) + treeByteSize + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(float) + total_unpred * sizeof(float) + num_elements * sizeof(int), 1); |
---|
| 4943 | unsigned char * result_pos = result; |
---|
| 4944 | initRandomAccessBytes(result_pos); |
---|
| 4945 | result_pos += meta_data_offset; |
---|
| 4946 | |
---|
| 4947 | sizeToBytes(result_pos, num_elements); |
---|
| 4948 | result_pos += exe_params->SZ_SIZE_TYPE; |
---|
| 4949 | |
---|
| 4950 | intToBytes_bigEndian(result_pos, block_size); |
---|
| 4951 | result_pos += sizeof(int); |
---|
| 4952 | doubleToBytes(result_pos, realPrecision); |
---|
| 4953 | result_pos += sizeof(double); |
---|
| 4954 | intToBytes_bigEndian(result_pos, quantization_intervals); |
---|
| 4955 | result_pos += sizeof(int); |
---|
| 4956 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
| 4957 | result_pos += sizeof(int); |
---|
| 4958 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
| 4959 | result_pos += sizeof(int); |
---|
| 4960 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
| 4961 | result_pos += treeByteSize; |
---|
| 4962 | free(treeBytes); |
---|
| 4963 | |
---|
| 4964 | memcpy(result_pos, &use_mean, sizeof(unsigned char)); |
---|
| 4965 | result_pos += sizeof(unsigned char); |
---|
| 4966 | memcpy(result_pos, &mean, sizeof(float)); |
---|
| 4967 | result_pos += sizeof(float); |
---|
| 4968 | |
---|
| 4969 | size_t indicator_size = convertIntArray2ByteArray_fast_1b_to_result(indicator, num_blocks, result_pos); |
---|
| 4970 | result_pos += indicator_size; |
---|
| 4971 | |
---|
| 4972 | //convert the lead/mid/resi to byte stream |
---|
| 4973 | if(reg_count>0){ |
---|
| 4974 | for(int e=0; e<3; e++){ |
---|
| 4975 | int stateNum = 2*coeff_intvCapacity_sz; |
---|
| 4976 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
| 4977 | size_t nodeCount = 0; |
---|
| 4978 | init(huffmanTree, coeff_type[e], reg_count); |
---|
| 4979 | size_t i = 0; |
---|
| 4980 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
| 4981 | if (huffmanTree->code[i]) nodeCount++; |
---|
| 4982 | nodeCount = nodeCount*2-1; |
---|
| 4983 | unsigned char *treeBytes; |
---|
| 4984 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
| 4985 | doubleToBytes(result_pos, precision[e]); |
---|
| 4986 | result_pos += sizeof(double); |
---|
| 4987 | intToBytes_bigEndian(result_pos, coeff_intvRadius); |
---|
| 4988 | result_pos += sizeof(int); |
---|
| 4989 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
| 4990 | result_pos += sizeof(int); |
---|
| 4991 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
| 4992 | result_pos += sizeof(int); |
---|
| 4993 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
| 4994 | result_pos += treeByteSize; |
---|
| 4995 | free(treeBytes); |
---|
| 4996 | size_t typeArray_size = 0; |
---|
| 4997 | encode(huffmanTree, coeff_type[e], reg_count, result_pos + sizeof(size_t), &typeArray_size); |
---|
| 4998 | sizeToBytes(result_pos, typeArray_size); |
---|
| 4999 | result_pos += sizeof(size_t) + typeArray_size; |
---|
| 5000 | intToBytes_bigEndian(result_pos, coeff_unpredictable_count[e]); |
---|
| 5001 | result_pos += sizeof(int); |
---|
| 5002 | memcpy(result_pos, coeff_unpred_data[e], coeff_unpredictable_count[e]*sizeof(float)); |
---|
| 5003 | result_pos += coeff_unpredictable_count[e]*sizeof(float); |
---|
| 5004 | SZ_ReleaseHuffman(huffmanTree); |
---|
| 5005 | } |
---|
| 5006 | } |
---|
| 5007 | free(coeff_result_type); |
---|
| 5008 | free(coeff_unpredictable_data); |
---|
| 5009 | |
---|
| 5010 | //record the number of unpredictable data and also store them |
---|
| 5011 | memcpy(result_pos, &total_unpred, sizeof(size_t)); |
---|
| 5012 | result_pos += sizeof(size_t); |
---|
| 5013 | memcpy(result_pos, result_unpredictable_data, total_unpred * sizeof(float)); |
---|
| 5014 | result_pos += total_unpred * sizeof(float); |
---|
| 5015 | size_t typeArray_size = 0; |
---|
| 5016 | encode(huffmanTree, result_type, num_elements, result_pos, &typeArray_size); |
---|
| 5017 | result_pos += typeArray_size; |
---|
| 5018 | |
---|
| 5019 | size_t totalEncodeSize = result_pos - result; |
---|
| 5020 | free(indicator); |
---|
| 5021 | free(result_unpredictable_data); |
---|
| 5022 | free(result_type); |
---|
| 5023 | free(reg_params); |
---|
| 5024 | |
---|
| 5025 | SZ_ReleaseHuffman(huffmanTree); |
---|
| 5026 | *comp_size = totalEncodeSize; |
---|
| 5027 | |
---|
| 5028 | return result; |
---|
| 5029 | } |
---|
| 5030 | |
---|
| 5031 | unsigned int optimize_intervals_float_3D_with_freq_and_dense_pos(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, float * dense_pos, float * max_freq, float * mean_freq) |
---|
| 5032 | { |
---|
| 5033 | float mean = 0.0; |
---|
| 5034 | size_t len = r1 * r2 * r3; |
---|
| 5035 | size_t mean_distance = (int) (sqrt(len)); |
---|
| 5036 | float * data_pos = oriData; |
---|
| 5037 | size_t offset_count = 0; |
---|
| 5038 | size_t offset_count_2 = 0; |
---|
| 5039 | size_t mean_count = 0; |
---|
| 5040 | while(data_pos - oriData < len){ |
---|
| 5041 | mean += *data_pos; |
---|
| 5042 | mean_count ++; |
---|
| 5043 | data_pos += mean_distance; |
---|
| 5044 | offset_count += mean_distance; |
---|
| 5045 | offset_count_2 += mean_distance; |
---|
| 5046 | if(offset_count >= r3){ |
---|
| 5047 | offset_count = 0; |
---|
| 5048 | data_pos -= 1; |
---|
| 5049 | } |
---|
| 5050 | if(offset_count_2 >= r2 * r3){ |
---|
| 5051 | offset_count_2 = 0; |
---|
| 5052 | data_pos -= 1; |
---|
| 5053 | } |
---|
| 5054 | } |
---|
| 5055 | if(mean_count > 0) mean /= mean_count; |
---|
| 5056 | size_t range = 8192; |
---|
| 5057 | size_t radius = 4096; |
---|
| 5058 | size_t * freq_intervals = (size_t *) malloc(range*sizeof(size_t)); |
---|
| 5059 | memset(freq_intervals, 0, range*sizeof(size_t)); |
---|
| 5060 | |
---|
| 5061 | unsigned int maxRangeRadius = confparams_cpr->maxRangeRadius; |
---|
| 5062 | int sampleDistance = confparams_cpr->sampleDistance; |
---|
| 5063 | float predThreshold = confparams_cpr->predThreshold; |
---|
| 5064 | |
---|
| 5065 | size_t i; |
---|
| 5066 | size_t radiusIndex; |
---|
| 5067 | size_t r23=r2*r3; |
---|
| 5068 | float pred_value = 0, pred_err; |
---|
| 5069 | size_t *intervals = (size_t*)malloc(maxRangeRadius*sizeof(size_t)); |
---|
| 5070 | memset(intervals, 0, maxRangeRadius*sizeof(size_t)); |
---|
| 5071 | |
---|
| 5072 | float mean_diff; |
---|
| 5073 | ptrdiff_t freq_index; |
---|
| 5074 | size_t freq_count = 0; |
---|
| 5075 | size_t sample_count = 0; |
---|
| 5076 | |
---|
| 5077 | offset_count = confparams_cpr->sampleDistance - 2; // count r3 offset |
---|
| 5078 | data_pos = oriData + r23 + r3 + offset_count; |
---|
| 5079 | size_t n1_count = 1, n2_count = 1; // count i,j sum |
---|
| 5080 | |
---|
| 5081 | while(data_pos - oriData < len){ |
---|
| 5082 | |
---|
| 5083 | pred_value = data_pos[-1] + data_pos[-r3] + data_pos[-r23] - data_pos[-1-r23] - data_pos[-r3-1] - data_pos[-r3-r23] + data_pos[-r3-r23-1]; |
---|
| 5084 | pred_err = fabs(pred_value - *data_pos); |
---|
| 5085 | if(pred_err < realPrecision) freq_count ++; |
---|
| 5086 | radiusIndex = (pred_err/realPrecision+1)/2; |
---|
| 5087 | if(radiusIndex>=maxRangeRadius) |
---|
| 5088 | { |
---|
| 5089 | radiusIndex = maxRangeRadius - 1; |
---|
| 5090 | } |
---|
| 5091 | intervals[radiusIndex]++; |
---|
| 5092 | |
---|
| 5093 | mean_diff = *data_pos - mean; |
---|
| 5094 | if(mean_diff > 0) freq_index = (ptrdiff_t)(mean_diff/realPrecision) + radius; |
---|
| 5095 | else freq_index = (ptrdiff_t)(mean_diff/realPrecision) - 1 + radius; |
---|
| 5096 | if(freq_index <= 0){ |
---|
| 5097 | freq_intervals[0] ++; |
---|
| 5098 | } |
---|
| 5099 | else if(freq_index >= range){ |
---|
| 5100 | freq_intervals[range - 1] ++; |
---|
| 5101 | } |
---|
| 5102 | else{ |
---|
| 5103 | freq_intervals[freq_index] ++; |
---|
| 5104 | } |
---|
| 5105 | offset_count += sampleDistance; |
---|
| 5106 | if(offset_count >= r3){ |
---|
| 5107 | n2_count ++; |
---|
| 5108 | if(n2_count == r2){ |
---|
| 5109 | n1_count ++; |
---|
| 5110 | n2_count = 1; |
---|
| 5111 | data_pos += r3; |
---|
| 5112 | } |
---|
| 5113 | offset_count_2 = (n1_count + n2_count) % sampleDistance; |
---|
| 5114 | data_pos += (r3 + sampleDistance - offset_count) + (sampleDistance - offset_count_2); |
---|
| 5115 | offset_count = (sampleDistance - offset_count_2); |
---|
| 5116 | if(offset_count == 0) offset_count ++; |
---|
| 5117 | } |
---|
| 5118 | else data_pos += sampleDistance; |
---|
| 5119 | sample_count ++; |
---|
| 5120 | } |
---|
| 5121 | *max_freq = freq_count * 1.0/ sample_count; |
---|
| 5122 | |
---|
| 5123 | //compute the appropriate number |
---|
| 5124 | size_t targetCount = sample_count*predThreshold; |
---|
| 5125 | size_t sum = 0; |
---|
| 5126 | for(i=0;i<maxRangeRadius;i++) |
---|
| 5127 | { |
---|
| 5128 | sum += intervals[i]; |
---|
| 5129 | if(sum>targetCount) |
---|
| 5130 | break; |
---|
| 5131 | } |
---|
| 5132 | if(i>=maxRangeRadius) |
---|
| 5133 | i = maxRangeRadius-1; |
---|
| 5134 | unsigned int accIntervals = 2*(i+1); |
---|
| 5135 | unsigned int powerOf2 = roundUpToPowerOf2(accIntervals); |
---|
| 5136 | |
---|
| 5137 | if(powerOf2<32) |
---|
| 5138 | powerOf2 = 32; |
---|
| 5139 | // collect frequency |
---|
| 5140 | size_t max_sum = 0; |
---|
| 5141 | size_t max_index = 0; |
---|
| 5142 | size_t tmp_sum; |
---|
| 5143 | size_t * freq_pos = freq_intervals + 1; |
---|
| 5144 | for(size_t i=1; i<range-2; i++){ |
---|
| 5145 | tmp_sum = freq_pos[0] + freq_pos[1]; |
---|
| 5146 | if(tmp_sum > max_sum){ |
---|
| 5147 | max_sum = tmp_sum; |
---|
| 5148 | max_index = i; |
---|
| 5149 | } |
---|
| 5150 | freq_pos ++; |
---|
| 5151 | } |
---|
| 5152 | *dense_pos = mean + realPrecision * (ptrdiff_t)(max_index + 1 - radius); |
---|
| 5153 | *mean_freq = max_sum * 1.0 / sample_count; |
---|
| 5154 | |
---|
| 5155 | free(freq_intervals); |
---|
| 5156 | free(intervals); |
---|
| 5157 | return powerOf2; |
---|
| 5158 | } |
---|
| 5159 | |
---|
| 5160 | |
---|
| 5161 | // 3D: modified for higher performance |
---|
| 5162 | unsigned char * SZ_compress_float_3D_MDQ_nonblocked_with_blocked_regression(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, size_t * comp_size){ |
---|
| 5163 | |
---|
| 5164 | #ifdef HAVE_TIMECMPR |
---|
| 5165 | float* decData = NULL; |
---|
| 5166 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 5167 | decData = (float*)(multisteps->hist_data); |
---|
| 5168 | #endif |
---|
| 5169 | |
---|
| 5170 | unsigned int quantization_intervals; |
---|
| 5171 | float sz_sample_correct_freq = -1;//0.5; //-1 |
---|
| 5172 | float dense_pos; |
---|
| 5173 | float mean_flush_freq; |
---|
| 5174 | unsigned char use_mean = 0; |
---|
| 5175 | |
---|
| 5176 | // calculate block dims |
---|
| 5177 | size_t num_x, num_y, num_z; |
---|
| 5178 | size_t block_size = 6; |
---|
| 5179 | SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r1, num_x, block_size); |
---|
| 5180 | SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r2, num_y, block_size); |
---|
| 5181 | SZ_COMPUTE_3D_NUMBER_OF_BLOCKS(r3, num_z, block_size); |
---|
| 5182 | |
---|
| 5183 | size_t split_index_x, split_index_y, split_index_z; |
---|
| 5184 | size_t early_blockcount_x, early_blockcount_y, early_blockcount_z; |
---|
| 5185 | size_t late_blockcount_x, late_blockcount_y, late_blockcount_z; |
---|
| 5186 | SZ_COMPUTE_BLOCKCOUNT(r1, num_x, split_index_x, early_blockcount_x, late_blockcount_x); |
---|
| 5187 | SZ_COMPUTE_BLOCKCOUNT(r2, num_y, split_index_y, early_blockcount_y, late_blockcount_y); |
---|
| 5188 | SZ_COMPUTE_BLOCKCOUNT(r3, num_z, split_index_z, early_blockcount_z, late_blockcount_z); |
---|
| 5189 | |
---|
| 5190 | size_t max_num_block_elements = early_blockcount_x * early_blockcount_y * early_blockcount_z; |
---|
| 5191 | size_t num_blocks = num_x * num_y * num_z; |
---|
| 5192 | size_t num_elements = r1 * r2 * r3; |
---|
| 5193 | |
---|
| 5194 | size_t dim0_offset = r2 * r3; |
---|
| 5195 | size_t dim1_offset = r3; |
---|
| 5196 | |
---|
| 5197 | int * result_type = (int *) malloc(num_elements * sizeof(int)); |
---|
| 5198 | size_t unpred_data_max_size = max_num_block_elements; |
---|
| 5199 | float * result_unpredictable_data = (float *) malloc(unpred_data_max_size * sizeof(float) * num_blocks); |
---|
| 5200 | size_t total_unpred = 0; |
---|
| 5201 | size_t unpredictable_count; |
---|
| 5202 | size_t max_unpred_count = 0; |
---|
| 5203 | float * data_pos = oriData; |
---|
| 5204 | int * type = result_type; |
---|
| 5205 | size_t type_offset; |
---|
| 5206 | size_t offset_x, offset_y, offset_z; |
---|
| 5207 | size_t current_blockcount_x, current_blockcount_y, current_blockcount_z; |
---|
| 5208 | |
---|
| 5209 | float * reg_params = (float *) malloc(num_blocks * 4 * sizeof(float)); |
---|
| 5210 | float * reg_params_pos = reg_params; |
---|
| 5211 | // move regression part out |
---|
| 5212 | size_t params_offset_b = num_blocks; |
---|
| 5213 | size_t params_offset_c = 2*num_blocks; |
---|
| 5214 | size_t params_offset_d = 3*num_blocks; |
---|
| 5215 | for(size_t i=0; i<num_x; i++){ |
---|
| 5216 | for(size_t j=0; j<num_y; j++){ |
---|
| 5217 | for(size_t k=0; k<num_z; k++){ |
---|
| 5218 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 5219 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 5220 | current_blockcount_z = (k < split_index_z) ? early_blockcount_z : late_blockcount_z; |
---|
| 5221 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 5222 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 5223 | offset_z = (k < split_index_z) ? k * early_blockcount_z : k * late_blockcount_z + split_index_z; |
---|
| 5224 | |
---|
| 5225 | data_pos = oriData + offset_x * dim0_offset + offset_y * dim1_offset + offset_z; |
---|
| 5226 | /*Calculate regression coefficients*/ |
---|
| 5227 | { |
---|
| 5228 | float * cur_data_pos = data_pos; |
---|
| 5229 | float fx = 0.0; |
---|
| 5230 | float fy = 0.0; |
---|
| 5231 | float fz = 0.0; |
---|
| 5232 | float f = 0; |
---|
| 5233 | float sum_x, sum_y; |
---|
| 5234 | float curData; |
---|
| 5235 | for(size_t i=0; i<current_blockcount_x; i++){ |
---|
| 5236 | sum_x = 0; |
---|
| 5237 | for(size_t j=0; j<current_blockcount_y; j++){ |
---|
| 5238 | sum_y = 0; |
---|
| 5239 | for(size_t k=0; k<current_blockcount_z; k++){ |
---|
| 5240 | curData = *cur_data_pos; |
---|
| 5241 | // f += curData; |
---|
| 5242 | // fx += curData * i; |
---|
| 5243 | // fy += curData * j; |
---|
| 5244 | // fz += curData * k; |
---|
| 5245 | sum_y += curData; |
---|
| 5246 | fz += curData * k; |
---|
| 5247 | cur_data_pos ++; |
---|
| 5248 | } |
---|
| 5249 | fy += sum_y * j; |
---|
| 5250 | sum_x += sum_y; |
---|
| 5251 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5252 | } |
---|
| 5253 | fx += sum_x * i; |
---|
| 5254 | f += sum_x; |
---|
| 5255 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
| 5256 | } |
---|
| 5257 | float coeff = 1.0 / (current_blockcount_x * current_blockcount_y * current_blockcount_z); |
---|
| 5258 | reg_params_pos[0] = (2 * fx / (current_blockcount_x - 1) - f) * 6 * coeff / (current_blockcount_x + 1); |
---|
| 5259 | reg_params_pos[params_offset_b] = (2 * fy / (current_blockcount_y - 1) - f) * 6 * coeff / (current_blockcount_y + 1); |
---|
| 5260 | reg_params_pos[params_offset_c] = (2 * fz / (current_blockcount_z - 1) - f) * 6 * coeff / (current_blockcount_z + 1); |
---|
| 5261 | reg_params_pos[params_offset_d] = f * coeff - ((current_blockcount_x - 1) * reg_params_pos[0] / 2 + (current_blockcount_y - 1) * reg_params_pos[params_offset_b] / 2 + (current_blockcount_z - 1) * reg_params_pos[params_offset_c] / 2); |
---|
| 5262 | } |
---|
| 5263 | reg_params_pos ++; |
---|
| 5264 | } |
---|
| 5265 | } |
---|
| 5266 | } |
---|
| 5267 | |
---|
| 5268 | //Compress coefficient arrays |
---|
| 5269 | double precision_a, precision_b, precision_c, precision_d; |
---|
| 5270 | float rel_param_err = 0.025; |
---|
| 5271 | precision_a = rel_param_err * realPrecision / late_blockcount_x; |
---|
| 5272 | precision_b = rel_param_err * realPrecision / late_blockcount_y; |
---|
| 5273 | precision_c = rel_param_err * realPrecision / late_blockcount_z; |
---|
| 5274 | precision_d = rel_param_err * realPrecision; |
---|
| 5275 | |
---|
| 5276 | if(exe_params->optQuantMode==1) |
---|
| 5277 | { |
---|
| 5278 | quantization_intervals = optimize_intervals_float_3D_with_freq_and_dense_pos(oriData, r1, r2, r3, realPrecision, &dense_pos, &sz_sample_correct_freq, &mean_flush_freq); |
---|
| 5279 | if(mean_flush_freq > 0.5 || mean_flush_freq > sz_sample_correct_freq) use_mean = 1; |
---|
| 5280 | updateQuantizationInfo(quantization_intervals); |
---|
| 5281 | } |
---|
| 5282 | else{ |
---|
| 5283 | quantization_intervals = exe_params->intvCapacity; |
---|
| 5284 | } |
---|
| 5285 | |
---|
| 5286 | float mean = 0; |
---|
| 5287 | if(use_mean){ |
---|
| 5288 | // compute mean |
---|
| 5289 | double sum = 0.0; |
---|
| 5290 | size_t mean_count = 0; |
---|
| 5291 | for(size_t i=0; i<num_elements; i++){ |
---|
| 5292 | if(fabs(oriData[i] - dense_pos) < realPrecision){ |
---|
| 5293 | sum += oriData[i]; |
---|
| 5294 | mean_count ++; |
---|
| 5295 | } |
---|
| 5296 | } |
---|
| 5297 | if(mean_count > 0) mean = sum / mean_count; |
---|
| 5298 | } |
---|
| 5299 | |
---|
| 5300 | double tmp_realPrecision = realPrecision; |
---|
| 5301 | |
---|
| 5302 | // use two prediction buffers for higher performance |
---|
| 5303 | float * unpredictable_data = result_unpredictable_data; |
---|
| 5304 | unsigned char * indicator = (unsigned char *) malloc(num_blocks * sizeof(unsigned char)); |
---|
| 5305 | memset(indicator, 0, num_blocks * sizeof(unsigned char)); |
---|
| 5306 | size_t reg_count = 0; |
---|
| 5307 | size_t strip_dim_0 = early_blockcount_x + 1; |
---|
| 5308 | size_t strip_dim_1 = r2 + 1; |
---|
| 5309 | size_t strip_dim_2 = r3 + 1; |
---|
| 5310 | size_t strip_dim0_offset = strip_dim_1 * strip_dim_2; |
---|
| 5311 | size_t strip_dim1_offset = strip_dim_2; |
---|
| 5312 | unsigned char * indicator_pos = indicator; |
---|
| 5313 | |
---|
| 5314 | size_t prediction_buffer_size = strip_dim_0 * strip_dim0_offset * sizeof(float); |
---|
| 5315 | float * prediction_buffer_1 = (float *) malloc(prediction_buffer_size); |
---|
| 5316 | memset(prediction_buffer_1, 0, prediction_buffer_size); |
---|
| 5317 | float * prediction_buffer_2 = (float *) malloc(prediction_buffer_size); |
---|
| 5318 | memset(prediction_buffer_2, 0, prediction_buffer_size); |
---|
| 5319 | float * cur_pb_buf = prediction_buffer_1; |
---|
| 5320 | float * next_pb_buf = prediction_buffer_2; |
---|
| 5321 | float * cur_pb_buf_pos; |
---|
| 5322 | float * next_pb_buf_pos; |
---|
| 5323 | int intvCapacity = exe_params->intvCapacity; |
---|
| 5324 | int intvRadius = exe_params->intvRadius; |
---|
| 5325 | int use_reg = 0; |
---|
| 5326 | float noise = realPrecision * 1.22; |
---|
| 5327 | |
---|
| 5328 | reg_params_pos = reg_params; |
---|
| 5329 | // compress the regression coefficients on the fly |
---|
| 5330 | float last_coeffcients[4] = {0.0}; |
---|
| 5331 | int coeff_intvCapacity_sz = 65536; |
---|
| 5332 | int coeff_intvRadius = coeff_intvCapacity_sz / 2; |
---|
| 5333 | int * coeff_type[4]; |
---|
| 5334 | int * coeff_result_type = (int *) malloc(num_blocks*4*sizeof(int)); |
---|
| 5335 | float * coeff_unpred_data[4]; |
---|
| 5336 | float * coeff_unpredictable_data = (float *) malloc(num_blocks*4*sizeof(float)); |
---|
| 5337 | double precision[4]; |
---|
| 5338 | precision[0] = precision_a, precision[1] = precision_b, precision[2] = precision_c, precision[3] = precision_d; |
---|
| 5339 | for(int i=0; i<4; i++){ |
---|
| 5340 | coeff_type[i] = coeff_result_type + i * num_blocks; |
---|
| 5341 | coeff_unpred_data[i] = coeff_unpredictable_data + i * num_blocks; |
---|
| 5342 | } |
---|
| 5343 | int coeff_index = 0; |
---|
| 5344 | unsigned int coeff_unpredictable_count[4] = {0}; |
---|
| 5345 | |
---|
| 5346 | if(use_mean){ |
---|
| 5347 | int intvCapacity_sz = intvCapacity - 2; |
---|
| 5348 | for(size_t i=0; i<num_x; i++){ |
---|
| 5349 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 5350 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 5351 | for(size_t j=0; j<num_y; j++){ |
---|
| 5352 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 5353 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 5354 | data_pos = oriData + offset_x * dim0_offset + offset_y * dim1_offset; |
---|
| 5355 | type_offset = offset_x * dim0_offset + offset_y * current_blockcount_x * dim1_offset; |
---|
| 5356 | type = result_type + type_offset; |
---|
| 5357 | |
---|
| 5358 | // prediction buffer is (current_block_count_x + 1) * (current_block_count_y + 1) * (current_block_count_z + 1) |
---|
| 5359 | cur_pb_buf_pos = cur_pb_buf + offset_y * strip_dim1_offset + strip_dim0_offset + strip_dim1_offset + 1; |
---|
| 5360 | next_pb_buf_pos = next_pb_buf + offset_y * strip_dim1_offset + strip_dim1_offset + 1; |
---|
| 5361 | |
---|
| 5362 | size_t current_blockcount_z; |
---|
| 5363 | float * pb_pos = cur_pb_buf_pos; |
---|
| 5364 | float * next_pb_pos = next_pb_buf_pos; |
---|
| 5365 | size_t strip_unpredictable_count = 0; |
---|
| 5366 | for(size_t k=0; k<num_z; k++){ |
---|
| 5367 | current_blockcount_z = (k < split_index_z) ? early_blockcount_z : late_blockcount_z; |
---|
| 5368 | #ifdef HAVE_TIMECMPR |
---|
| 5369 | size_t offset_z = 0; |
---|
| 5370 | offset_z = (k < split_index_z) ? k * early_blockcount_z : k * late_blockcount_z + split_index_z; |
---|
| 5371 | size_t block_offset = offset_x * dim0_offset + offset_y * dim1_offset + offset_z; |
---|
| 5372 | #endif |
---|
| 5373 | /*sampling and decide which predictor*/ |
---|
| 5374 | { |
---|
| 5375 | // sample point [1, 1, 1] [1, 1, 4] [1, 4, 1] [1, 4, 4] [4, 1, 1] [4, 1, 4] [4, 4, 1] [4, 4, 4] |
---|
| 5376 | float * cur_data_pos; |
---|
| 5377 | float curData; |
---|
| 5378 | float pred_reg, pred_sz; |
---|
| 5379 | float err_sz = 0.0, err_reg = 0.0; |
---|
| 5380 | int bmi = 0; |
---|
| 5381 | if(i>0 && j>0 && k>0){ |
---|
| 5382 | for(int i=0; i<block_size; i++){ |
---|
| 5383 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
| 5384 | curData = *cur_data_pos; |
---|
| 5385 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5386 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 5387 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 5388 | err_reg += fabs(pred_reg - curData); |
---|
| 5389 | |
---|
| 5390 | bmi = block_size - i; |
---|
| 5391 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
| 5392 | curData = *cur_data_pos; |
---|
| 5393 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5394 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 5395 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 5396 | err_reg += fabs(pred_reg - curData); |
---|
| 5397 | |
---|
| 5398 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
| 5399 | curData = *cur_data_pos; |
---|
| 5400 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5401 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 5402 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 5403 | err_reg += fabs(pred_reg - curData); |
---|
| 5404 | |
---|
| 5405 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
| 5406 | curData = *cur_data_pos; |
---|
| 5407 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5408 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 5409 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 5410 | err_reg += fabs(pred_reg - curData); |
---|
| 5411 | } |
---|
| 5412 | } |
---|
| 5413 | else{ |
---|
| 5414 | for(int i=1; i<block_size; i++){ |
---|
| 5415 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
| 5416 | curData = *cur_data_pos; |
---|
| 5417 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5418 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 5419 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 5420 | err_reg += fabs(pred_reg - curData); |
---|
| 5421 | |
---|
| 5422 | bmi = block_size - i; |
---|
| 5423 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
| 5424 | curData = *cur_data_pos; |
---|
| 5425 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5426 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 5427 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 5428 | err_reg += fabs(pred_reg - curData); |
---|
| 5429 | |
---|
| 5430 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
| 5431 | curData = *cur_data_pos; |
---|
| 5432 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5433 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 5434 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 5435 | err_reg += fabs(pred_reg - curData); |
---|
| 5436 | |
---|
| 5437 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
| 5438 | curData = *cur_data_pos; |
---|
| 5439 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5440 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 5441 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 5442 | err_reg += fabs(pred_reg - curData); |
---|
| 5443 | |
---|
| 5444 | } |
---|
| 5445 | } |
---|
| 5446 | use_reg = (err_reg < err_sz); |
---|
| 5447 | } |
---|
| 5448 | if(use_reg){ |
---|
| 5449 | { |
---|
| 5450 | /*predict coefficients in current block via previous reg_block*/ |
---|
| 5451 | float cur_coeff; |
---|
| 5452 | double diff, itvNum; |
---|
| 5453 | for(int e=0; e<4; e++){ |
---|
| 5454 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
| 5455 | diff = cur_coeff - last_coeffcients[e]; |
---|
| 5456 | itvNum = fabs(diff)/precision[e] + 1; |
---|
| 5457 | if (itvNum < coeff_intvCapacity_sz){ |
---|
| 5458 | if (diff < 0) itvNum = -itvNum; |
---|
| 5459 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
| 5460 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
| 5461 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5462 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
| 5463 | coeff_type[e][coeff_index] = 0; |
---|
| 5464 | last_coeffcients[e] = cur_coeff; |
---|
| 5465 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 5466 | } |
---|
| 5467 | } |
---|
| 5468 | else{ |
---|
| 5469 | coeff_type[e][coeff_index] = 0; |
---|
| 5470 | last_coeffcients[e] = cur_coeff; |
---|
| 5471 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 5472 | } |
---|
| 5473 | } |
---|
| 5474 | coeff_index ++; |
---|
| 5475 | } |
---|
| 5476 | float curData; |
---|
| 5477 | float pred; |
---|
| 5478 | double itvNum; |
---|
| 5479 | double diff; |
---|
| 5480 | size_t index = 0; |
---|
| 5481 | size_t block_unpredictable_count = 0; |
---|
| 5482 | float * cur_data_pos = data_pos; |
---|
| 5483 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 5484 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5485 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5486 | curData = *cur_data_pos; |
---|
| 5487 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
| 5488 | diff = curData - pred; |
---|
| 5489 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
| 5490 | if (itvNum < intvCapacity){ |
---|
| 5491 | if (diff < 0) itvNum = -itvNum; |
---|
| 5492 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5493 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5494 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5495 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
| 5496 | type[index] = 0; |
---|
| 5497 | pred = curData; |
---|
| 5498 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5499 | } |
---|
| 5500 | } |
---|
| 5501 | else{ |
---|
| 5502 | type[index] = 0; |
---|
| 5503 | pred = curData; |
---|
| 5504 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5505 | } |
---|
| 5506 | |
---|
| 5507 | #ifdef HAVE_TIMECMPR |
---|
| 5508 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
| 5509 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 5510 | decData[block_offset + point_offset] = pred; |
---|
| 5511 | #endif |
---|
| 5512 | |
---|
| 5513 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
| 5514 | // assign value to block surfaces |
---|
| 5515 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
| 5516 | } |
---|
| 5517 | index ++; |
---|
| 5518 | cur_data_pos ++; |
---|
| 5519 | } |
---|
| 5520 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5521 | } |
---|
| 5522 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
| 5523 | } |
---|
| 5524 | /*dealing with the last ii (boundary)*/ |
---|
| 5525 | { |
---|
| 5526 | // ii == current_blockcount_x - 1 |
---|
| 5527 | size_t ii = current_blockcount_x - 1; |
---|
| 5528 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5529 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5530 | curData = *cur_data_pos; |
---|
| 5531 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
| 5532 | diff = curData - pred; |
---|
| 5533 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
| 5534 | if (itvNum < intvCapacity){ |
---|
| 5535 | if (diff < 0) itvNum = -itvNum; |
---|
| 5536 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5537 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5538 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5539 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
| 5540 | type[index] = 0; |
---|
| 5541 | pred = curData; |
---|
| 5542 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5543 | } |
---|
| 5544 | } |
---|
| 5545 | else{ |
---|
| 5546 | type[index] = 0; |
---|
| 5547 | pred = curData; |
---|
| 5548 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5549 | } |
---|
| 5550 | |
---|
| 5551 | #ifdef HAVE_TIMECMPR |
---|
| 5552 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
| 5553 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 5554 | decData[block_offset + point_offset] = pred; |
---|
| 5555 | #endif |
---|
| 5556 | |
---|
| 5557 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
| 5558 | // assign value to block surfaces |
---|
| 5559 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
| 5560 | } |
---|
| 5561 | // assign value to next prediction buffer |
---|
| 5562 | next_pb_pos[jj * strip_dim1_offset + kk] = pred; |
---|
| 5563 | index ++; |
---|
| 5564 | cur_data_pos ++; |
---|
| 5565 | } |
---|
| 5566 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5567 | } |
---|
| 5568 | } |
---|
| 5569 | unpredictable_count = block_unpredictable_count; |
---|
| 5570 | strip_unpredictable_count += unpredictable_count; |
---|
| 5571 | unpredictable_data += unpredictable_count; |
---|
| 5572 | |
---|
| 5573 | reg_count ++; |
---|
| 5574 | } |
---|
| 5575 | else{ |
---|
| 5576 | // use SZ |
---|
| 5577 | // SZ predication |
---|
| 5578 | unpredictable_count = 0; |
---|
| 5579 | float * cur_pb_pos = pb_pos; |
---|
| 5580 | float * cur_data_pos = data_pos; |
---|
| 5581 | float curData; |
---|
| 5582 | float pred3D; |
---|
| 5583 | double itvNum, diff; |
---|
| 5584 | size_t index = 0; |
---|
| 5585 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 5586 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5587 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5588 | |
---|
| 5589 | curData = *cur_data_pos; |
---|
| 5590 | if(fabs(curData - mean) <= realPrecision){ |
---|
| 5591 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
| 5592 | type[index] = intvRadius; |
---|
| 5593 | *cur_pb_pos = mean; |
---|
| 5594 | } |
---|
| 5595 | else |
---|
| 5596 | { |
---|
| 5597 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
| 5598 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 5599 | diff = curData - pred3D; |
---|
| 5600 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 5601 | if (itvNum < intvCapacity_sz){ |
---|
| 5602 | if (diff < 0) itvNum = -itvNum; |
---|
| 5603 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5604 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5605 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
| 5606 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5607 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 5608 | type[index] = 0; |
---|
| 5609 | *cur_pb_pos = curData; |
---|
| 5610 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 5611 | } |
---|
| 5612 | } |
---|
| 5613 | else{ |
---|
| 5614 | type[index] = 0; |
---|
| 5615 | *cur_pb_pos = curData; |
---|
| 5616 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 5617 | } |
---|
| 5618 | } |
---|
| 5619 | #ifdef HAVE_TIMECMPR |
---|
| 5620 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
| 5621 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 5622 | decData[block_offset + point_offset] = *cur_pb_pos; |
---|
| 5623 | #endif |
---|
| 5624 | |
---|
| 5625 | index ++; |
---|
| 5626 | cur_pb_pos ++; |
---|
| 5627 | cur_data_pos ++; |
---|
| 5628 | } |
---|
| 5629 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
| 5630 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5631 | } |
---|
| 5632 | cur_pb_pos += strip_dim0_offset - current_blockcount_y * strip_dim1_offset; |
---|
| 5633 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
| 5634 | } |
---|
| 5635 | /*dealing with the last ii (boundary)*/ |
---|
| 5636 | { |
---|
| 5637 | // ii == current_blockcount_x - 1 |
---|
| 5638 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5639 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5640 | |
---|
| 5641 | curData = *cur_data_pos; |
---|
| 5642 | if(fabs(curData - mean) <= realPrecision){ |
---|
| 5643 | // adjust type[index] to intvRadius for coherence with freq in reg |
---|
| 5644 | type[index] = intvRadius; |
---|
| 5645 | *cur_pb_pos = mean; |
---|
| 5646 | } |
---|
| 5647 | else |
---|
| 5648 | { |
---|
| 5649 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
| 5650 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 5651 | diff = curData - pred3D; |
---|
| 5652 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 5653 | if (itvNum < intvCapacity_sz){ |
---|
| 5654 | if (diff < 0) itvNum = -itvNum; |
---|
| 5655 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5656 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5657 | if(type[index] <= intvRadius) type[index] -= 1; |
---|
| 5658 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5659 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 5660 | type[index] = 0; |
---|
| 5661 | *cur_pb_pos = curData; |
---|
| 5662 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 5663 | } |
---|
| 5664 | } |
---|
| 5665 | else{ |
---|
| 5666 | type[index] = 0; |
---|
| 5667 | *cur_pb_pos = curData; |
---|
| 5668 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 5669 | } |
---|
| 5670 | } |
---|
| 5671 | #ifdef HAVE_TIMECMPR |
---|
| 5672 | size_t ii = current_blockcount_x - 1; |
---|
| 5673 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
| 5674 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 5675 | decData[block_offset + point_offset] = *cur_pb_pos; |
---|
| 5676 | #endif |
---|
| 5677 | |
---|
| 5678 | next_pb_pos[jj * strip_dim1_offset + kk] = *cur_pb_pos; |
---|
| 5679 | index ++; |
---|
| 5680 | cur_pb_pos ++; |
---|
| 5681 | cur_data_pos ++; |
---|
| 5682 | } |
---|
| 5683 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
| 5684 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5685 | } |
---|
| 5686 | } |
---|
| 5687 | strip_unpredictable_count += unpredictable_count; |
---|
| 5688 | unpredictable_data += unpredictable_count; |
---|
| 5689 | // change indicator |
---|
| 5690 | indicator_pos[k] = 1; |
---|
| 5691 | }// end SZ |
---|
| 5692 | |
---|
| 5693 | reg_params_pos ++; |
---|
| 5694 | data_pos += current_blockcount_z; |
---|
| 5695 | pb_pos += current_blockcount_z; |
---|
| 5696 | next_pb_pos += current_blockcount_z; |
---|
| 5697 | type += current_blockcount_x * current_blockcount_y * current_blockcount_z; |
---|
| 5698 | |
---|
| 5699 | } // end k |
---|
| 5700 | |
---|
| 5701 | if(strip_unpredictable_count > max_unpred_count){ |
---|
| 5702 | max_unpred_count = strip_unpredictable_count; |
---|
| 5703 | } |
---|
| 5704 | total_unpred += strip_unpredictable_count; |
---|
| 5705 | indicator_pos += num_z; |
---|
| 5706 | }// end j |
---|
| 5707 | float * tmp; |
---|
| 5708 | tmp = cur_pb_buf; |
---|
| 5709 | cur_pb_buf = next_pb_buf; |
---|
| 5710 | next_pb_buf = tmp; |
---|
| 5711 | }// end i |
---|
| 5712 | } |
---|
| 5713 | else{ |
---|
| 5714 | int intvCapacity_sz = intvCapacity - 2; |
---|
| 5715 | for(size_t i=0; i<num_x; i++){ |
---|
| 5716 | current_blockcount_x = (i < split_index_x) ? early_blockcount_x : late_blockcount_x; |
---|
| 5717 | offset_x = (i < split_index_x) ? i * early_blockcount_x : i * late_blockcount_x + split_index_x; |
---|
| 5718 | |
---|
| 5719 | for(size_t j=0; j<num_y; j++){ |
---|
| 5720 | offset_y = (j < split_index_y) ? j * early_blockcount_y : j * late_blockcount_y + split_index_y; |
---|
| 5721 | current_blockcount_y = (j < split_index_y) ? early_blockcount_y : late_blockcount_y; |
---|
| 5722 | data_pos = oriData + offset_x * dim0_offset + offset_y * dim1_offset; |
---|
| 5723 | // copy bottom plane from plane buffer |
---|
| 5724 | // memcpy(prediction_buffer, bottom_buffer + offset_y * strip_dim1_offset, (current_blockcount_y + 1) * strip_dim1_offset * sizeof(float)); |
---|
| 5725 | type_offset = offset_x * dim0_offset + offset_y * current_blockcount_x * dim1_offset; |
---|
| 5726 | type = result_type + type_offset; |
---|
| 5727 | |
---|
| 5728 | // prediction buffer is (current_block_count_x + 1) * (current_block_count_y + 1) * (current_block_count_z + 1) |
---|
| 5729 | cur_pb_buf_pos = cur_pb_buf + offset_y * strip_dim1_offset + strip_dim0_offset + strip_dim1_offset + 1; |
---|
| 5730 | next_pb_buf_pos = next_pb_buf + offset_y * strip_dim1_offset + strip_dim1_offset + 1; |
---|
| 5731 | |
---|
| 5732 | size_t current_blockcount_z; |
---|
| 5733 | float * pb_pos = cur_pb_buf_pos; |
---|
| 5734 | float * next_pb_pos = next_pb_buf_pos; |
---|
| 5735 | size_t strip_unpredictable_count = 0; |
---|
| 5736 | for(size_t k=0; k<num_z; k++){ |
---|
| 5737 | current_blockcount_z = (k < split_index_z) ? early_blockcount_z : late_blockcount_z; |
---|
| 5738 | #ifdef HAVE_TIMECMPR |
---|
| 5739 | size_t offset_z = 0; |
---|
| 5740 | offset_z = (k < split_index_z) ? k * early_blockcount_z : k * late_blockcount_z + split_index_z; |
---|
| 5741 | size_t block_offset = offset_x * dim0_offset + offset_y * dim1_offset + offset_z; |
---|
| 5742 | #endif |
---|
| 5743 | /*sampling*/ |
---|
| 5744 | { |
---|
| 5745 | // sample point [1, 1, 1] [1, 1, 4] [1, 4, 1] [1, 4, 4] [4, 1, 1] [4, 1, 4] [4, 4, 1] [4, 4, 4] |
---|
| 5746 | float * cur_data_pos; |
---|
| 5747 | float curData; |
---|
| 5748 | float pred_reg, pred_sz; |
---|
| 5749 | float err_sz = 0.0, err_reg = 0.0; |
---|
| 5750 | int bmi; |
---|
| 5751 | if(i>0 && j>0 && k>0){ |
---|
| 5752 | for(int i=0; i<block_size; i++){ |
---|
| 5753 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
| 5754 | curData = *cur_data_pos; |
---|
| 5755 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5756 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 5757 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 5758 | err_reg += fabs(pred_reg - curData); |
---|
| 5759 | |
---|
| 5760 | bmi = block_size - i; |
---|
| 5761 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
| 5762 | curData = *cur_data_pos; |
---|
| 5763 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5764 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 5765 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 5766 | err_reg += fabs(pred_reg - curData); |
---|
| 5767 | |
---|
| 5768 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
| 5769 | curData = *cur_data_pos; |
---|
| 5770 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5771 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 5772 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 5773 | err_reg += fabs(pred_reg - curData); |
---|
| 5774 | |
---|
| 5775 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
| 5776 | curData = *cur_data_pos; |
---|
| 5777 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5778 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 5779 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 5780 | err_reg += fabs(pred_reg - curData); |
---|
| 5781 | } |
---|
| 5782 | } |
---|
| 5783 | else{ |
---|
| 5784 | for(int i=1; i<block_size; i++){ |
---|
| 5785 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + i; |
---|
| 5786 | curData = *cur_data_pos; |
---|
| 5787 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5788 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 5789 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 5790 | err_reg += fabs(pred_reg - curData); |
---|
| 5791 | |
---|
| 5792 | bmi = block_size - i; |
---|
| 5793 | cur_data_pos = data_pos + i*dim0_offset + i*dim1_offset + bmi; |
---|
| 5794 | curData = *cur_data_pos; |
---|
| 5795 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5796 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 5797 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 5798 | err_reg += fabs(pred_reg - curData); |
---|
| 5799 | |
---|
| 5800 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + i; |
---|
| 5801 | curData = *cur_data_pos; |
---|
| 5802 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5803 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 5804 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 5805 | err_reg += fabs(pred_reg - curData); |
---|
| 5806 | |
---|
| 5807 | cur_data_pos = data_pos + i*dim0_offset + bmi*dim1_offset + bmi; |
---|
| 5808 | curData = *cur_data_pos; |
---|
| 5809 | pred_sz = cur_data_pos[-1] + cur_data_pos[-dim1_offset]+ cur_data_pos[-dim0_offset] - cur_data_pos[-dim1_offset - 1] - cur_data_pos[-dim0_offset - 1] - cur_data_pos[-dim0_offset - dim1_offset] + cur_data_pos[-dim0_offset - dim1_offset - 1]; |
---|
| 5810 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 5811 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 5812 | err_reg += fabs(pred_reg - curData); |
---|
| 5813 | } |
---|
| 5814 | } |
---|
| 5815 | use_reg = (err_reg < err_sz); |
---|
| 5816 | |
---|
| 5817 | } |
---|
| 5818 | if(use_reg) |
---|
| 5819 | { |
---|
| 5820 | { |
---|
| 5821 | /*predict coefficients in current block via previous reg_block*/ |
---|
| 5822 | float cur_coeff; |
---|
| 5823 | double diff, itvNum; |
---|
| 5824 | for(int e=0; e<4; e++){ |
---|
| 5825 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
| 5826 | diff = cur_coeff - last_coeffcients[e]; |
---|
| 5827 | itvNum = fabs(diff)/precision[e] + 1; |
---|
| 5828 | if (itvNum < coeff_intvCapacity_sz){ |
---|
| 5829 | if (diff < 0) itvNum = -itvNum; |
---|
| 5830 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
| 5831 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
| 5832 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5833 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
| 5834 | coeff_type[e][coeff_index] = 0; |
---|
| 5835 | last_coeffcients[e] = cur_coeff; |
---|
| 5836 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 5837 | } |
---|
| 5838 | } |
---|
| 5839 | else{ |
---|
| 5840 | coeff_type[e][coeff_index] = 0; |
---|
| 5841 | last_coeffcients[e] = cur_coeff; |
---|
| 5842 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 5843 | } |
---|
| 5844 | } |
---|
| 5845 | coeff_index ++; |
---|
| 5846 | } |
---|
| 5847 | float curData; |
---|
| 5848 | float pred; |
---|
| 5849 | double itvNum; |
---|
| 5850 | double diff; |
---|
| 5851 | size_t index = 0; |
---|
| 5852 | size_t block_unpredictable_count = 0; |
---|
| 5853 | float * cur_data_pos = data_pos; |
---|
| 5854 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 5855 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5856 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5857 | |
---|
| 5858 | curData = *cur_data_pos; |
---|
| 5859 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
| 5860 | diff = curData - pred; |
---|
| 5861 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
| 5862 | if (itvNum < intvCapacity){ |
---|
| 5863 | if (diff < 0) itvNum = -itvNum; |
---|
| 5864 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5865 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5866 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5867 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
| 5868 | type[index] = 0; |
---|
| 5869 | pred = curData; |
---|
| 5870 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5871 | } |
---|
| 5872 | } |
---|
| 5873 | else{ |
---|
| 5874 | type[index] = 0; |
---|
| 5875 | pred = curData; |
---|
| 5876 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5877 | } |
---|
| 5878 | |
---|
| 5879 | #ifdef HAVE_TIMECMPR |
---|
| 5880 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
| 5881 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 5882 | decData[block_offset + point_offset] = pred; |
---|
| 5883 | #endif |
---|
| 5884 | |
---|
| 5885 | |
---|
| 5886 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
| 5887 | // assign value to block surfaces |
---|
| 5888 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
| 5889 | } |
---|
| 5890 | index ++; |
---|
| 5891 | cur_data_pos ++; |
---|
| 5892 | } |
---|
| 5893 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5894 | } |
---|
| 5895 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
| 5896 | } |
---|
| 5897 | /*dealing with the last ii (boundary)*/ |
---|
| 5898 | { |
---|
| 5899 | // ii == current_blockcount_x - 1 |
---|
| 5900 | size_t ii = current_blockcount_x - 1; |
---|
| 5901 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5902 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5903 | curData = *cur_data_pos; |
---|
| 5904 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
| 5905 | diff = curData - pred; |
---|
| 5906 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
| 5907 | if (itvNum < intvCapacity){ |
---|
| 5908 | if (diff < 0) itvNum = -itvNum; |
---|
| 5909 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5910 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5911 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5912 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
| 5913 | type[index] = 0; |
---|
| 5914 | pred = curData; |
---|
| 5915 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5916 | } |
---|
| 5917 | } |
---|
| 5918 | else{ |
---|
| 5919 | type[index] = 0; |
---|
| 5920 | pred = curData; |
---|
| 5921 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 5922 | } |
---|
| 5923 | |
---|
| 5924 | #ifdef HAVE_TIMECMPR |
---|
| 5925 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
| 5926 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 5927 | decData[block_offset + point_offset] = pred; |
---|
| 5928 | #endif |
---|
| 5929 | |
---|
| 5930 | if((jj == current_blockcount_y - 1) || (kk == current_blockcount_z - 1)){ |
---|
| 5931 | // assign value to block surfaces |
---|
| 5932 | pb_pos[ii * strip_dim0_offset + jj * strip_dim1_offset + kk] = pred; |
---|
| 5933 | } |
---|
| 5934 | // assign value to next prediction buffer |
---|
| 5935 | next_pb_pos[jj * strip_dim1_offset + kk] = pred; |
---|
| 5936 | index ++; |
---|
| 5937 | cur_data_pos ++; |
---|
| 5938 | } |
---|
| 5939 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5940 | } |
---|
| 5941 | } |
---|
| 5942 | unpredictable_count = block_unpredictable_count; |
---|
| 5943 | strip_unpredictable_count += unpredictable_count; |
---|
| 5944 | unpredictable_data += unpredictable_count; |
---|
| 5945 | reg_count ++; |
---|
| 5946 | } |
---|
| 5947 | else{ |
---|
| 5948 | // use SZ |
---|
| 5949 | // SZ predication |
---|
| 5950 | unpredictable_count = 0; |
---|
| 5951 | float * cur_pb_pos = pb_pos; |
---|
| 5952 | float * cur_data_pos = data_pos; |
---|
| 5953 | float curData; |
---|
| 5954 | float pred3D; |
---|
| 5955 | double itvNum, diff; |
---|
| 5956 | size_t index = 0; |
---|
| 5957 | for(size_t ii=0; ii<current_blockcount_x - 1; ii++){ |
---|
| 5958 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 5959 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 5960 | |
---|
| 5961 | curData = *cur_data_pos; |
---|
| 5962 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
| 5963 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 5964 | diff = curData - pred3D; |
---|
| 5965 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 5966 | if (itvNum < intvCapacity_sz){ |
---|
| 5967 | if (diff < 0) itvNum = -itvNum; |
---|
| 5968 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 5969 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 5970 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 5971 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 5972 | type[index] = 0; |
---|
| 5973 | *cur_pb_pos = curData; |
---|
| 5974 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 5975 | } |
---|
| 5976 | } |
---|
| 5977 | else{ |
---|
| 5978 | type[index] = 0; |
---|
| 5979 | *cur_pb_pos = curData; |
---|
| 5980 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 5981 | } |
---|
| 5982 | |
---|
| 5983 | #ifdef HAVE_TIMECMPR |
---|
| 5984 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
| 5985 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 5986 | decData[block_offset + point_offset] = *cur_pb_pos; |
---|
| 5987 | #endif |
---|
| 5988 | index ++; |
---|
| 5989 | cur_pb_pos ++; |
---|
| 5990 | cur_data_pos ++; |
---|
| 5991 | } |
---|
| 5992 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
| 5993 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 5994 | } |
---|
| 5995 | cur_pb_pos += strip_dim0_offset - current_blockcount_y * strip_dim1_offset; |
---|
| 5996 | cur_data_pos += dim0_offset - current_blockcount_y * dim1_offset; |
---|
| 5997 | } |
---|
| 5998 | /*dealing with the last ii (boundary)*/ |
---|
| 5999 | { |
---|
| 6000 | // ii == current_blockcount_x - 1 |
---|
| 6001 | for(size_t jj=0; jj<current_blockcount_y; jj++){ |
---|
| 6002 | for(size_t kk=0; kk<current_blockcount_z; kk++){ |
---|
| 6003 | |
---|
| 6004 | curData = *cur_data_pos; |
---|
| 6005 | pred3D = cur_pb_pos[-1] + cur_pb_pos[-strip_dim1_offset]+ cur_pb_pos[-strip_dim0_offset] - cur_pb_pos[-strip_dim1_offset - 1] |
---|
| 6006 | - cur_pb_pos[-strip_dim0_offset - 1] - cur_pb_pos[-strip_dim0_offset - strip_dim1_offset] + cur_pb_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6007 | diff = curData - pred3D; |
---|
| 6008 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 6009 | if (itvNum < intvCapacity_sz){ |
---|
| 6010 | if (diff < 0) itvNum = -itvNum; |
---|
| 6011 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 6012 | *cur_pb_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 6013 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 6014 | if(fabs(curData - *cur_pb_pos)>tmp_realPrecision){ |
---|
| 6015 | type[index] = 0; |
---|
| 6016 | *cur_pb_pos = curData; |
---|
| 6017 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 6018 | } |
---|
| 6019 | } |
---|
| 6020 | else{ |
---|
| 6021 | type[index] = 0; |
---|
| 6022 | *cur_pb_pos = curData; |
---|
| 6023 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 6024 | } |
---|
| 6025 | |
---|
| 6026 | #ifdef HAVE_TIMECMPR |
---|
| 6027 | size_t ii = current_blockcount_x - 1; |
---|
| 6028 | size_t point_offset = ii*dim0_offset + jj*dim1_offset + kk; |
---|
| 6029 | if(confparams_cpr->szMode == SZ_TEMPORAL_COMPRESSION) |
---|
| 6030 | decData[block_offset + point_offset] = *cur_pb_pos; |
---|
| 6031 | #endif |
---|
| 6032 | |
---|
| 6033 | // assign value to next prediction buffer |
---|
| 6034 | next_pb_pos[jj * strip_dim1_offset + kk] = *cur_pb_pos; |
---|
| 6035 | index ++; |
---|
| 6036 | cur_pb_pos ++; |
---|
| 6037 | cur_data_pos ++; |
---|
| 6038 | } |
---|
| 6039 | cur_pb_pos += strip_dim1_offset - current_blockcount_z; |
---|
| 6040 | cur_data_pos += dim1_offset - current_blockcount_z; |
---|
| 6041 | } |
---|
| 6042 | } |
---|
| 6043 | strip_unpredictable_count += unpredictable_count; |
---|
| 6044 | unpredictable_data += unpredictable_count; |
---|
| 6045 | // change indicator |
---|
| 6046 | indicator_pos[k] = 1; |
---|
| 6047 | }// end SZ |
---|
| 6048 | |
---|
| 6049 | reg_params_pos ++; |
---|
| 6050 | data_pos += current_blockcount_z; |
---|
| 6051 | pb_pos += current_blockcount_z; |
---|
| 6052 | next_pb_pos += current_blockcount_z; |
---|
| 6053 | type += current_blockcount_x * current_blockcount_y * current_blockcount_z; |
---|
| 6054 | |
---|
| 6055 | } |
---|
| 6056 | |
---|
| 6057 | if(strip_unpredictable_count > max_unpred_count){ |
---|
| 6058 | max_unpred_count = strip_unpredictable_count; |
---|
| 6059 | } |
---|
| 6060 | total_unpred += strip_unpredictable_count; |
---|
| 6061 | indicator_pos += num_z; |
---|
| 6062 | } |
---|
| 6063 | float * tmp; |
---|
| 6064 | tmp = cur_pb_buf; |
---|
| 6065 | cur_pb_buf = next_pb_buf; |
---|
| 6066 | next_pb_buf = tmp; |
---|
| 6067 | } |
---|
| 6068 | } |
---|
| 6069 | |
---|
| 6070 | free(prediction_buffer_1); |
---|
| 6071 | free(prediction_buffer_2); |
---|
| 6072 | |
---|
| 6073 | int stateNum = 2*quantization_intervals; |
---|
| 6074 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
| 6075 | |
---|
| 6076 | size_t nodeCount = 0; |
---|
| 6077 | init(huffmanTree, result_type, num_elements); |
---|
| 6078 | size_t i = 0; |
---|
| 6079 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
| 6080 | if (huffmanTree->code[i]) nodeCount++; |
---|
| 6081 | nodeCount = nodeCount*2-1; |
---|
| 6082 | |
---|
| 6083 | unsigned char *treeBytes; |
---|
| 6084 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
| 6085 | |
---|
| 6086 | unsigned int meta_data_offset = 3 + 1 + MetaDataByteLength; |
---|
| 6087 | // total size metadata # elements real precision intervals nodeCount huffman block index unpredicatable count mean unpred size elements |
---|
| 6088 | unsigned char * result = (unsigned char *) calloc(meta_data_offset + exe_params->SZ_SIZE_TYPE + sizeof(double) + sizeof(int) + sizeof(int) + treeByteSize + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(float) + total_unpred * sizeof(float) + num_elements * sizeof(int), 1); |
---|
| 6089 | unsigned char * result_pos = result; |
---|
| 6090 | initRandomAccessBytes(result_pos); |
---|
| 6091 | |
---|
| 6092 | result_pos += meta_data_offset; |
---|
| 6093 | |
---|
| 6094 | sizeToBytes(result_pos,num_elements); //SZ_SIZE_TYPE: 4 or 8 |
---|
| 6095 | result_pos += exe_params->SZ_SIZE_TYPE; |
---|
| 6096 | |
---|
| 6097 | intToBytes_bigEndian(result_pos, block_size); |
---|
| 6098 | result_pos += sizeof(int); |
---|
| 6099 | doubleToBytes(result_pos, realPrecision); |
---|
| 6100 | result_pos += sizeof(double); |
---|
| 6101 | intToBytes_bigEndian(result_pos, quantization_intervals); |
---|
| 6102 | result_pos += sizeof(int); |
---|
| 6103 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
| 6104 | result_pos += sizeof(int); |
---|
| 6105 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
| 6106 | result_pos += sizeof(int); |
---|
| 6107 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
| 6108 | result_pos += treeByteSize; |
---|
| 6109 | free(treeBytes); |
---|
| 6110 | |
---|
| 6111 | memcpy(result_pos, &use_mean, sizeof(unsigned char)); |
---|
| 6112 | result_pos += sizeof(unsigned char); |
---|
| 6113 | memcpy(result_pos, &mean, sizeof(float)); |
---|
| 6114 | result_pos += sizeof(float); |
---|
| 6115 | size_t indicator_size = convertIntArray2ByteArray_fast_1b_to_result(indicator, num_blocks, result_pos); |
---|
| 6116 | result_pos += indicator_size; |
---|
| 6117 | |
---|
| 6118 | //convert the lead/mid/resi to byte stream |
---|
| 6119 | if(reg_count > 0){ |
---|
| 6120 | for(int e=0; e<4; e++){ |
---|
| 6121 | int stateNum = 2*coeff_intvCapacity_sz; |
---|
| 6122 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
| 6123 | size_t nodeCount = 0; |
---|
| 6124 | init(huffmanTree, coeff_type[e], reg_count); |
---|
| 6125 | size_t i = 0; |
---|
| 6126 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
| 6127 | if (huffmanTree->code[i]) nodeCount++; |
---|
| 6128 | nodeCount = nodeCount*2-1; |
---|
| 6129 | unsigned char *treeBytes; |
---|
| 6130 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
| 6131 | doubleToBytes(result_pos, precision[e]); |
---|
| 6132 | result_pos += sizeof(double); |
---|
| 6133 | intToBytes_bigEndian(result_pos, coeff_intvRadius); |
---|
| 6134 | result_pos += sizeof(int); |
---|
| 6135 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
| 6136 | result_pos += sizeof(int); |
---|
| 6137 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
| 6138 | result_pos += sizeof(int); |
---|
| 6139 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
| 6140 | result_pos += treeByteSize; |
---|
| 6141 | free(treeBytes); |
---|
| 6142 | size_t typeArray_size = 0; |
---|
| 6143 | encode(huffmanTree, coeff_type[e], reg_count, result_pos + sizeof(size_t), &typeArray_size); |
---|
| 6144 | sizeToBytes(result_pos, typeArray_size); |
---|
| 6145 | result_pos += sizeof(size_t) + typeArray_size; |
---|
| 6146 | intToBytes_bigEndian(result_pos, coeff_unpredictable_count[e]); |
---|
| 6147 | result_pos += sizeof(int); |
---|
| 6148 | memcpy(result_pos, coeff_unpred_data[e], coeff_unpredictable_count[e]*sizeof(float)); |
---|
| 6149 | result_pos += coeff_unpredictable_count[e]*sizeof(float); |
---|
| 6150 | SZ_ReleaseHuffman(huffmanTree); |
---|
| 6151 | } |
---|
| 6152 | } |
---|
| 6153 | free(coeff_result_type); |
---|
| 6154 | free(coeff_unpredictable_data); |
---|
| 6155 | |
---|
| 6156 | //record the number of unpredictable data and also store them |
---|
| 6157 | memcpy(result_pos, &total_unpred, sizeof(size_t)); |
---|
| 6158 | result_pos += sizeof(size_t); |
---|
| 6159 | memcpy(result_pos, result_unpredictable_data, total_unpred * sizeof(float)); |
---|
| 6160 | result_pos += total_unpred * sizeof(float); |
---|
| 6161 | size_t typeArray_size = 0; |
---|
| 6162 | encode(huffmanTree, result_type, num_elements, result_pos, &typeArray_size); |
---|
| 6163 | result_pos += typeArray_size; |
---|
| 6164 | size_t totalEncodeSize = result_pos - result; |
---|
| 6165 | free(indicator); |
---|
| 6166 | free(result_unpredictable_data); |
---|
| 6167 | free(result_type); |
---|
| 6168 | free(reg_params); |
---|
| 6169 | |
---|
| 6170 | |
---|
| 6171 | SZ_ReleaseHuffman(huffmanTree); |
---|
| 6172 | *comp_size = totalEncodeSize; |
---|
| 6173 | return result; |
---|
| 6174 | } |
---|
| 6175 | |
---|
| 6176 | unsigned char * SZ_compress_float_3D_MDQ_random_access_with_blocked_regression(float *oriData, size_t r1, size_t r2, size_t r3, double realPrecision, size_t * comp_size){ |
---|
| 6177 | |
---|
| 6178 | unsigned int quantization_intervals; |
---|
| 6179 | float sz_sample_correct_freq = -1;//0.5; //-1 |
---|
| 6180 | float dense_pos; |
---|
| 6181 | float mean_flush_freq; |
---|
| 6182 | unsigned char use_mean = 0; |
---|
| 6183 | |
---|
| 6184 | // calculate block dims |
---|
| 6185 | size_t num_x, num_y, num_z; |
---|
| 6186 | size_t block_size = 6; |
---|
| 6187 | num_x = (r1 - 1) / block_size + 1; |
---|
| 6188 | num_y = (r2 - 1) / block_size + 1; |
---|
| 6189 | num_z = (r3 - 1) / block_size + 1; |
---|
| 6190 | |
---|
| 6191 | size_t max_num_block_elements = block_size * block_size * block_size; |
---|
| 6192 | size_t num_blocks = num_x * num_y * num_z; |
---|
| 6193 | size_t num_elements = r1 * r2 * r3; |
---|
| 6194 | |
---|
| 6195 | size_t dim0_offset = r2 * r3; |
---|
| 6196 | size_t dim1_offset = r3; |
---|
| 6197 | |
---|
| 6198 | int * result_type = (int *) malloc(num_blocks*max_num_block_elements * sizeof(int)); |
---|
| 6199 | size_t unpred_data_max_size = max_num_block_elements; |
---|
| 6200 | float * result_unpredictable_data = (float *) malloc(unpred_data_max_size * sizeof(float) * num_blocks); |
---|
| 6201 | size_t total_unpred = 0; |
---|
| 6202 | size_t unpredictable_count; |
---|
| 6203 | float * data_pos = oriData; |
---|
| 6204 | int * type = result_type; |
---|
| 6205 | float * reg_params = (float *) malloc(num_blocks * 4 * sizeof(float)); |
---|
| 6206 | float * reg_params_pos = reg_params; |
---|
| 6207 | // move regression part out |
---|
| 6208 | size_t params_offset_b = num_blocks; |
---|
| 6209 | size_t params_offset_c = 2*num_blocks; |
---|
| 6210 | size_t params_offset_d = 3*num_blocks; |
---|
| 6211 | float * pred_buffer = (float *) malloc((block_size+1)*(block_size+1)*(block_size+1)*sizeof(float)); |
---|
| 6212 | float * pred_buffer_pos = NULL; |
---|
| 6213 | float * block_data_pos_x = NULL; |
---|
| 6214 | float * block_data_pos_y = NULL; |
---|
| 6215 | float * block_data_pos_z = NULL; |
---|
| 6216 | for(size_t i=0; i<num_x; i++){ |
---|
| 6217 | for(size_t j=0; j<num_y; j++){ |
---|
| 6218 | for(size_t k=0; k<num_z; k++){ |
---|
| 6219 | data_pos = oriData + i*block_size * dim0_offset + j*block_size * dim1_offset + k*block_size; |
---|
| 6220 | pred_buffer_pos = pred_buffer; |
---|
| 6221 | block_data_pos_x = data_pos; |
---|
| 6222 | // use the buffer as block_size*block_size*block_size |
---|
| 6223 | for(int ii=0; ii<block_size; ii++){ |
---|
| 6224 | block_data_pos_y = block_data_pos_x; |
---|
| 6225 | for(int jj=0; jj<block_size; jj++){ |
---|
| 6226 | block_data_pos_z = block_data_pos_y; |
---|
| 6227 | for(int kk=0; kk<block_size; kk++){ |
---|
| 6228 | *pred_buffer_pos = *block_data_pos_z; |
---|
| 6229 | if(k*block_size + kk + 1 < r3) block_data_pos_z ++; |
---|
| 6230 | pred_buffer_pos ++; |
---|
| 6231 | } |
---|
| 6232 | if(j*block_size + jj + 1 < r2) block_data_pos_y += dim1_offset; |
---|
| 6233 | } |
---|
| 6234 | if(i*block_size + ii + 1 < r1) block_data_pos_x += dim0_offset; |
---|
| 6235 | } |
---|
| 6236 | /*Calculate regression coefficients*/ |
---|
| 6237 | { |
---|
| 6238 | float * cur_data_pos = pred_buffer; |
---|
| 6239 | float fx = 0.0; |
---|
| 6240 | float fy = 0.0; |
---|
| 6241 | float fz = 0.0; |
---|
| 6242 | float f = 0; |
---|
| 6243 | float sum_x, sum_y; |
---|
| 6244 | float curData; |
---|
| 6245 | for(size_t i=0; i<block_size; i++){ |
---|
| 6246 | sum_x = 0; |
---|
| 6247 | for(size_t j=0; j<block_size; j++){ |
---|
| 6248 | sum_y = 0; |
---|
| 6249 | for(size_t k=0; k<block_size; k++){ |
---|
| 6250 | curData = *cur_data_pos; |
---|
| 6251 | sum_y += curData; |
---|
| 6252 | fz += curData * k; |
---|
| 6253 | cur_data_pos ++; |
---|
| 6254 | } |
---|
| 6255 | fy += sum_y * j; |
---|
| 6256 | sum_x += sum_y; |
---|
| 6257 | } |
---|
| 6258 | fx += sum_x * i; |
---|
| 6259 | f += sum_x; |
---|
| 6260 | } |
---|
| 6261 | float coeff = 1.0 / (block_size * block_size * block_size); |
---|
| 6262 | reg_params_pos[0] = (2 * fx / (block_size - 1) - f) * 6 * coeff / (block_size + 1); |
---|
| 6263 | reg_params_pos[params_offset_b] = (2 * fy / (block_size - 1) - f) * 6 * coeff / (block_size + 1); |
---|
| 6264 | reg_params_pos[params_offset_c] = (2 * fz / (block_size - 1) - f) * 6 * coeff / (block_size + 1); |
---|
| 6265 | reg_params_pos[params_offset_d] = f * coeff - ((block_size - 1) * reg_params_pos[0] / 2 + (block_size - 1) * reg_params_pos[params_offset_b] / 2 + (block_size - 1) * reg_params_pos[params_offset_c] / 2); |
---|
| 6266 | } |
---|
| 6267 | reg_params_pos ++; |
---|
| 6268 | } |
---|
| 6269 | } |
---|
| 6270 | } |
---|
| 6271 | |
---|
| 6272 | //Compress coefficient arrays |
---|
| 6273 | double precision_a, precision_b, precision_c, precision_d; |
---|
| 6274 | float rel_param_err = 0.025; |
---|
| 6275 | precision_a = rel_param_err * realPrecision / block_size; |
---|
| 6276 | precision_b = rel_param_err * realPrecision / block_size; |
---|
| 6277 | precision_c = rel_param_err * realPrecision / block_size; |
---|
| 6278 | precision_d = rel_param_err * realPrecision; |
---|
| 6279 | |
---|
| 6280 | if(exe_params->optQuantMode==1) |
---|
| 6281 | { |
---|
| 6282 | quantization_intervals = optimize_intervals_float_3D_with_freq_and_dense_pos(oriData, r1, r2, r3, realPrecision, &dense_pos, &sz_sample_correct_freq, &mean_flush_freq); |
---|
| 6283 | if(mean_flush_freq > 0.5 || mean_flush_freq > sz_sample_correct_freq) use_mean = 1; |
---|
| 6284 | updateQuantizationInfo(quantization_intervals); |
---|
| 6285 | } |
---|
| 6286 | else{ |
---|
| 6287 | quantization_intervals = exe_params->intvCapacity; |
---|
| 6288 | } |
---|
| 6289 | |
---|
| 6290 | float mean = 0; |
---|
| 6291 | if(use_mean){ |
---|
| 6292 | // compute mean |
---|
| 6293 | double sum = 0.0; |
---|
| 6294 | size_t mean_count = 0; |
---|
| 6295 | for(size_t i=0; i<num_elements; i++){ |
---|
| 6296 | if(fabs(oriData[i] - dense_pos) < realPrecision){ |
---|
| 6297 | sum += oriData[i]; |
---|
| 6298 | mean_count ++; |
---|
| 6299 | } |
---|
| 6300 | } |
---|
| 6301 | if(mean_count > 0) mean = sum / mean_count; |
---|
| 6302 | } |
---|
| 6303 | |
---|
| 6304 | double tmp_realPrecision = realPrecision; |
---|
| 6305 | |
---|
| 6306 | // use two prediction buffers for higher performance |
---|
| 6307 | float * unpredictable_data = result_unpredictable_data; |
---|
| 6308 | unsigned char * indicator = (unsigned char *) malloc(num_blocks * sizeof(unsigned char)); |
---|
| 6309 | memset(indicator, 0, num_blocks * sizeof(unsigned char)); |
---|
| 6310 | size_t reg_count = 0; |
---|
| 6311 | unsigned char * indicator_pos = indicator; |
---|
| 6312 | |
---|
| 6313 | int intvCapacity = exe_params->intvCapacity; |
---|
| 6314 | int intvRadius = exe_params->intvRadius; |
---|
| 6315 | int use_reg = 0; |
---|
| 6316 | float noise = realPrecision * 1.22; |
---|
| 6317 | |
---|
| 6318 | reg_params_pos = reg_params; |
---|
| 6319 | // compress the regression coefficients on the fly |
---|
| 6320 | float last_coeffcients[4] = {0.0}; |
---|
| 6321 | int coeff_intvCapacity_sz = 65536; |
---|
| 6322 | int coeff_intvRadius = coeff_intvCapacity_sz / 2; |
---|
| 6323 | int * coeff_type[4]; |
---|
| 6324 | int * coeff_result_type = (int *) malloc(num_blocks*4*sizeof(int)); |
---|
| 6325 | float * coeff_unpred_data[4]; |
---|
| 6326 | float * coeff_unpredictable_data = (float *) malloc(num_blocks*4*sizeof(float)); |
---|
| 6327 | double precision[4]; |
---|
| 6328 | precision[0] = precision_a, precision[1] = precision_b, precision[2] = precision_c, precision[3] = precision_d; |
---|
| 6329 | for(int i=0; i<4; i++){ |
---|
| 6330 | coeff_type[i] = coeff_result_type + i * num_blocks; |
---|
| 6331 | coeff_unpred_data[i] = coeff_unpredictable_data + i * num_blocks; |
---|
| 6332 | } |
---|
| 6333 | int coeff_index = 0; |
---|
| 6334 | unsigned int coeff_unpredictable_count[4] = {0}; |
---|
| 6335 | |
---|
| 6336 | memset(pred_buffer, 0, (block_size+1)*(block_size+1)*(block_size+1)*sizeof(float)); |
---|
| 6337 | int pred_buffer_block_size = block_size + 1; |
---|
| 6338 | int strip_dim0_offset = pred_buffer_block_size * pred_buffer_block_size; |
---|
| 6339 | int strip_dim1_offset = pred_buffer_block_size; |
---|
| 6340 | |
---|
| 6341 | if(use_mean){ |
---|
| 6342 | int intvCapacity_sz = intvCapacity - 2; |
---|
| 6343 | type = result_type; |
---|
| 6344 | for(size_t i=0; i<num_x; i++){ |
---|
| 6345 | for(size_t j=0; j<num_y; j++){ |
---|
| 6346 | for(size_t k=0; k<num_z; k++){ |
---|
| 6347 | data_pos = oriData + i*block_size * dim0_offset + j*block_size * dim1_offset + k*block_size; |
---|
| 6348 | // add 1 in x, y, z offset |
---|
| 6349 | pred_buffer_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
| 6350 | block_data_pos_x = data_pos; |
---|
| 6351 | for(int ii=0; ii<block_size; ii++){ |
---|
| 6352 | block_data_pos_y = block_data_pos_x; |
---|
| 6353 | for(int jj=0; jj<block_size; jj++){ |
---|
| 6354 | block_data_pos_z = block_data_pos_y; |
---|
| 6355 | for(int kk=0; kk<block_size; kk++){ |
---|
| 6356 | *pred_buffer_pos = *block_data_pos_z; |
---|
| 6357 | if(k*block_size + kk + 1< r3) block_data_pos_z ++; |
---|
| 6358 | pred_buffer_pos ++; |
---|
| 6359 | } |
---|
| 6360 | // add 1 in z offset |
---|
| 6361 | pred_buffer_pos ++; |
---|
| 6362 | if(j*block_size + jj + 1< r2) block_data_pos_y += dim1_offset; |
---|
| 6363 | } |
---|
| 6364 | // add 1 in y offset |
---|
| 6365 | pred_buffer_pos += pred_buffer_block_size; |
---|
| 6366 | if(i*block_size + ii + 1< r1) block_data_pos_x += dim0_offset; |
---|
| 6367 | } |
---|
| 6368 | /*sampling and decide which predictor*/ |
---|
| 6369 | { |
---|
| 6370 | // sample point [1, 1, 1] [1, 1, 4] [1, 4, 1] [1, 4, 4] [4, 1, 1] [4, 1, 4] [4, 4, 1] [4, 4, 4] |
---|
| 6371 | float * cur_data_pos; |
---|
| 6372 | float curData; |
---|
| 6373 | float pred_reg, pred_sz; |
---|
| 6374 | float err_sz = 0.0, err_reg = 0.0; |
---|
| 6375 | int bmi = 0; |
---|
| 6376 | for(int i=2; i<=block_size; i++){ |
---|
| 6377 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + i*pred_buffer_block_size + i; |
---|
| 6378 | curData = *cur_data_pos; |
---|
| 6379 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6380 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 6381 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 6382 | err_reg += fabs(pred_reg - curData); |
---|
| 6383 | |
---|
| 6384 | bmi = block_size - i; |
---|
| 6385 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + i*pred_buffer_block_size + bmi; |
---|
| 6386 | curData = *cur_data_pos; |
---|
| 6387 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6388 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 6389 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 6390 | err_reg += fabs(pred_reg - curData); |
---|
| 6391 | |
---|
| 6392 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + bmi*pred_buffer_block_size + i; |
---|
| 6393 | curData = *cur_data_pos; |
---|
| 6394 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6395 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 6396 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 6397 | err_reg += fabs(pred_reg - curData); |
---|
| 6398 | |
---|
| 6399 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + bmi*pred_buffer_block_size + bmi; |
---|
| 6400 | curData = *cur_data_pos; |
---|
| 6401 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6402 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 6403 | err_sz += MIN(fabs(pred_sz - curData) + noise, fabs(mean - curData)); |
---|
| 6404 | err_reg += fabs(pred_reg - curData); |
---|
| 6405 | } |
---|
| 6406 | |
---|
| 6407 | use_reg = (err_reg < err_sz); |
---|
| 6408 | } |
---|
| 6409 | if(use_reg){ |
---|
| 6410 | { |
---|
| 6411 | /*predict coefficients in current block via previous reg_block*/ |
---|
| 6412 | float cur_coeff; |
---|
| 6413 | double diff, itvNum; |
---|
| 6414 | for(int e=0; e<4; e++){ |
---|
| 6415 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
| 6416 | diff = cur_coeff - last_coeffcients[e]; |
---|
| 6417 | itvNum = fabs(diff)/precision[e] + 1; |
---|
| 6418 | if (itvNum < coeff_intvCapacity_sz){ |
---|
| 6419 | if (diff < 0) itvNum = -itvNum; |
---|
| 6420 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
| 6421 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
| 6422 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 6423 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
| 6424 | coeff_type[e][coeff_index] = 0; |
---|
| 6425 | last_coeffcients[e] = cur_coeff; |
---|
| 6426 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 6427 | } |
---|
| 6428 | } |
---|
| 6429 | else{ |
---|
| 6430 | coeff_type[e][coeff_index] = 0; |
---|
| 6431 | last_coeffcients[e] = cur_coeff; |
---|
| 6432 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 6433 | } |
---|
| 6434 | } |
---|
| 6435 | coeff_index ++; |
---|
| 6436 | } |
---|
| 6437 | float curData; |
---|
| 6438 | float pred; |
---|
| 6439 | double itvNum; |
---|
| 6440 | double diff; |
---|
| 6441 | size_t index = 0; |
---|
| 6442 | size_t block_unpredictable_count = 0; |
---|
| 6443 | float * cur_data_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
| 6444 | for(size_t ii=0; ii<block_size; ii++){ |
---|
| 6445 | for(size_t jj=0; jj<block_size; jj++){ |
---|
| 6446 | for(size_t kk=0; kk<block_size; kk++){ |
---|
| 6447 | curData = *cur_data_pos; |
---|
| 6448 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
| 6449 | diff = curData - pred; |
---|
| 6450 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
| 6451 | if (itvNum < intvCapacity){ |
---|
| 6452 | if (diff < 0) itvNum = -itvNum; |
---|
| 6453 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 6454 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 6455 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 6456 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
| 6457 | type[index] = 0; |
---|
| 6458 | pred = curData; |
---|
| 6459 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 6460 | } |
---|
| 6461 | } |
---|
| 6462 | else{ |
---|
| 6463 | type[index] = 0; |
---|
| 6464 | pred = curData; |
---|
| 6465 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 6466 | } |
---|
| 6467 | index ++; |
---|
| 6468 | cur_data_pos ++; |
---|
| 6469 | } |
---|
| 6470 | cur_data_pos ++; |
---|
| 6471 | } |
---|
| 6472 | cur_data_pos += pred_buffer_block_size; |
---|
| 6473 | } |
---|
| 6474 | |
---|
| 6475 | total_unpred += block_unpredictable_count; |
---|
| 6476 | unpredictable_data += block_unpredictable_count; |
---|
| 6477 | reg_count ++; |
---|
| 6478 | } |
---|
| 6479 | else{ |
---|
| 6480 | // use SZ |
---|
| 6481 | // SZ predication |
---|
| 6482 | unpredictable_count = 0; |
---|
| 6483 | float * cur_data_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
| 6484 | float curData; |
---|
| 6485 | float pred3D; |
---|
| 6486 | double itvNum, diff; |
---|
| 6487 | size_t index = 0; |
---|
| 6488 | for(size_t ii=0; ii<block_size; ii++){ |
---|
| 6489 | for(size_t jj=0; jj<block_size; jj++){ |
---|
| 6490 | for(size_t kk=0; kk<block_size; kk++){ |
---|
| 6491 | |
---|
| 6492 | curData = *cur_data_pos; |
---|
| 6493 | if(fabs(curData - mean) <= realPrecision){ |
---|
| 6494 | type[index] = 1; |
---|
| 6495 | *cur_data_pos = mean; |
---|
| 6496 | } |
---|
| 6497 | else |
---|
| 6498 | { |
---|
| 6499 | pred3D = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] |
---|
| 6500 | - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6501 | diff = curData - pred3D; |
---|
| 6502 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 6503 | if (itvNum < intvCapacity_sz){ |
---|
| 6504 | if (diff < 0) itvNum = -itvNum; |
---|
| 6505 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 6506 | *cur_data_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 6507 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 6508 | if(fabs(curData - *cur_data_pos)>tmp_realPrecision){ |
---|
| 6509 | type[index] = 0; |
---|
| 6510 | *cur_data_pos = curData; |
---|
| 6511 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 6512 | } |
---|
| 6513 | } |
---|
| 6514 | else{ |
---|
| 6515 | type[index] = 0; |
---|
| 6516 | *cur_data_pos = curData; |
---|
| 6517 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 6518 | } |
---|
| 6519 | } |
---|
| 6520 | index ++; |
---|
| 6521 | cur_data_pos ++; |
---|
| 6522 | } |
---|
| 6523 | cur_data_pos ++; |
---|
| 6524 | } |
---|
| 6525 | cur_data_pos += pred_buffer_block_size; |
---|
| 6526 | } |
---|
| 6527 | total_unpred += unpredictable_count; |
---|
| 6528 | unpredictable_data += unpredictable_count; |
---|
| 6529 | // change indicator |
---|
| 6530 | indicator_pos[k] = 1; |
---|
| 6531 | }// end SZ |
---|
| 6532 | reg_params_pos ++; |
---|
| 6533 | type += block_size * block_size * block_size; |
---|
| 6534 | } // end k |
---|
| 6535 | indicator_pos += num_z; |
---|
| 6536 | }// end j |
---|
| 6537 | }// end i |
---|
| 6538 | } |
---|
| 6539 | else{ |
---|
| 6540 | int intvCapacity_sz = intvCapacity - 2; |
---|
| 6541 | type = result_type; |
---|
| 6542 | for(size_t i=0; i<num_x; i++){ |
---|
| 6543 | for(size_t j=0; j<num_y; j++){ |
---|
| 6544 | for(size_t k=0; k<num_z; k++){ |
---|
| 6545 | data_pos = oriData + i*block_size * dim0_offset + j*block_size * dim1_offset + k*block_size; |
---|
| 6546 | // add 1 in x, y, z offset |
---|
| 6547 | pred_buffer_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
| 6548 | block_data_pos_x = data_pos; |
---|
| 6549 | for(int ii=0; ii<block_size; ii++){ |
---|
| 6550 | block_data_pos_y = block_data_pos_x; |
---|
| 6551 | for(int jj=0; jj<block_size; jj++){ |
---|
| 6552 | block_data_pos_z = block_data_pos_y; |
---|
| 6553 | for(int kk=0; kk<block_size; kk++){ |
---|
| 6554 | *pred_buffer_pos = *block_data_pos_z; |
---|
| 6555 | if(k*block_size + kk < r3) block_data_pos_z ++; |
---|
| 6556 | pred_buffer_pos ++; |
---|
| 6557 | } |
---|
| 6558 | // add 1 in z offset |
---|
| 6559 | pred_buffer_pos ++; |
---|
| 6560 | if(j*block_size + jj < r2) block_data_pos_y += dim1_offset; |
---|
| 6561 | } |
---|
| 6562 | // add 1 in y offset |
---|
| 6563 | pred_buffer_pos += pred_buffer_block_size; |
---|
| 6564 | if(i*block_size + ii < r1) block_data_pos_x += dim0_offset; |
---|
| 6565 | } |
---|
| 6566 | /*sampling*/ |
---|
| 6567 | { |
---|
| 6568 | // sample point [1, 1, 1] [1, 1, 4] [1, 4, 1] [1, 4, 4] [4, 1, 1] [4, 1, 4] [4, 4, 1] [4, 4, 4] |
---|
| 6569 | float * cur_data_pos; |
---|
| 6570 | float curData; |
---|
| 6571 | float pred_reg, pred_sz; |
---|
| 6572 | float err_sz = 0.0, err_reg = 0.0; |
---|
| 6573 | int bmi; |
---|
| 6574 | for(int i=2; i<=block_size; i++){ |
---|
| 6575 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + i*pred_buffer_block_size + i; |
---|
| 6576 | curData = *cur_data_pos; |
---|
| 6577 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6578 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 6579 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 6580 | err_reg += fabs(pred_reg - curData); |
---|
| 6581 | |
---|
| 6582 | bmi = block_size - i; |
---|
| 6583 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + i*pred_buffer_block_size + bmi; |
---|
| 6584 | curData = *cur_data_pos; |
---|
| 6585 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6586 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * i + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 6587 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 6588 | err_reg += fabs(pred_reg - curData); |
---|
| 6589 | |
---|
| 6590 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + bmi*pred_buffer_block_size + i; |
---|
| 6591 | curData = *cur_data_pos; |
---|
| 6592 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6593 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * i + reg_params_pos[params_offset_d]; |
---|
| 6594 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 6595 | err_reg += fabs(pred_reg - curData); |
---|
| 6596 | |
---|
| 6597 | cur_data_pos = pred_buffer + i*pred_buffer_block_size*pred_buffer_block_size + bmi*pred_buffer_block_size + bmi; |
---|
| 6598 | curData = *cur_data_pos; |
---|
| 6599 | pred_sz = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6600 | pred_reg = reg_params_pos[0] * i + reg_params_pos[params_offset_b] * bmi + reg_params_pos[params_offset_c] * bmi + reg_params_pos[params_offset_d]; |
---|
| 6601 | err_sz += fabs(pred_sz - curData) + noise; |
---|
| 6602 | err_reg += fabs(pred_reg - curData); |
---|
| 6603 | } |
---|
| 6604 | |
---|
| 6605 | use_reg = (err_reg < err_sz); |
---|
| 6606 | |
---|
| 6607 | } |
---|
| 6608 | if(use_reg) |
---|
| 6609 | { |
---|
| 6610 | { |
---|
| 6611 | /*predict coefficients in current block via previous reg_block*/ |
---|
| 6612 | float cur_coeff; |
---|
| 6613 | double diff, itvNum; |
---|
| 6614 | for(int e=0; e<4; e++){ |
---|
| 6615 | cur_coeff = reg_params_pos[e*num_blocks]; |
---|
| 6616 | diff = cur_coeff - last_coeffcients[e]; |
---|
| 6617 | itvNum = fabs(diff)/precision[e] + 1; |
---|
| 6618 | if (itvNum < coeff_intvCapacity_sz){ |
---|
| 6619 | if (diff < 0) itvNum = -itvNum; |
---|
| 6620 | coeff_type[e][coeff_index] = (int) (itvNum/2) + coeff_intvRadius; |
---|
| 6621 | last_coeffcients[e] = last_coeffcients[e] + 2 * (coeff_type[e][coeff_index] - coeff_intvRadius) * precision[e]; |
---|
| 6622 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 6623 | if(fabs(cur_coeff - last_coeffcients[e])>precision[e]){ |
---|
| 6624 | coeff_type[e][coeff_index] = 0; |
---|
| 6625 | last_coeffcients[e] = cur_coeff; |
---|
| 6626 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 6627 | } |
---|
| 6628 | } |
---|
| 6629 | else{ |
---|
| 6630 | coeff_type[e][coeff_index] = 0; |
---|
| 6631 | last_coeffcients[e] = cur_coeff; |
---|
| 6632 | coeff_unpred_data[e][coeff_unpredictable_count[e] ++] = cur_coeff; |
---|
| 6633 | } |
---|
| 6634 | } |
---|
| 6635 | coeff_index ++; |
---|
| 6636 | } |
---|
| 6637 | float curData; |
---|
| 6638 | float pred; |
---|
| 6639 | double itvNum; |
---|
| 6640 | double diff; |
---|
| 6641 | size_t index = 0; |
---|
| 6642 | size_t block_unpredictable_count = 0; |
---|
| 6643 | float * cur_data_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
| 6644 | for(size_t ii=0; ii<block_size; ii++){ |
---|
| 6645 | for(size_t jj=0; jj<block_size; jj++){ |
---|
| 6646 | for(size_t kk=0; kk<block_size; kk++){ |
---|
| 6647 | curData = *cur_data_pos; |
---|
| 6648 | pred = last_coeffcients[0] * ii + last_coeffcients[1] * jj + last_coeffcients[2] * kk + last_coeffcients[3]; |
---|
| 6649 | diff = curData - pred; |
---|
| 6650 | itvNum = fabs(diff)/tmp_realPrecision + 1; |
---|
| 6651 | if (itvNum < intvCapacity){ |
---|
| 6652 | if (diff < 0) itvNum = -itvNum; |
---|
| 6653 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 6654 | pred = pred + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 6655 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 6656 | if(fabs(curData - pred)>tmp_realPrecision){ |
---|
| 6657 | type[index] = 0; |
---|
| 6658 | pred = curData; |
---|
| 6659 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 6660 | } |
---|
| 6661 | } |
---|
| 6662 | else{ |
---|
| 6663 | type[index] = 0; |
---|
| 6664 | pred = curData; |
---|
| 6665 | unpredictable_data[block_unpredictable_count ++] = curData; |
---|
| 6666 | } |
---|
| 6667 | index ++; |
---|
| 6668 | cur_data_pos ++; |
---|
| 6669 | } |
---|
| 6670 | cur_data_pos ++; |
---|
| 6671 | } |
---|
| 6672 | cur_data_pos += pred_buffer_block_size; |
---|
| 6673 | } |
---|
| 6674 | total_unpred += block_unpredictable_count; |
---|
| 6675 | unpredictable_data += block_unpredictable_count; |
---|
| 6676 | reg_count ++; |
---|
| 6677 | } |
---|
| 6678 | else{ |
---|
| 6679 | // use SZ |
---|
| 6680 | // SZ predication |
---|
| 6681 | unpredictable_count = 0; |
---|
| 6682 | float * cur_data_pos = pred_buffer + pred_buffer_block_size*pred_buffer_block_size + pred_buffer_block_size + 1; |
---|
| 6683 | float curData; |
---|
| 6684 | float pred3D; |
---|
| 6685 | double itvNum, diff; |
---|
| 6686 | size_t index = 0; |
---|
| 6687 | for(size_t ii=0; ii<block_size; ii++){ |
---|
| 6688 | for(size_t jj=0; jj<block_size; jj++){ |
---|
| 6689 | for(size_t kk=0; kk<block_size; kk++){ |
---|
| 6690 | curData = *cur_data_pos; |
---|
| 6691 | pred3D = cur_data_pos[-1] + cur_data_pos[-strip_dim1_offset]+ cur_data_pos[-strip_dim0_offset] - cur_data_pos[-strip_dim1_offset - 1] |
---|
| 6692 | - cur_data_pos[-strip_dim0_offset - 1] - cur_data_pos[-strip_dim0_offset - strip_dim1_offset] + cur_data_pos[-strip_dim0_offset - strip_dim1_offset - 1]; |
---|
| 6693 | diff = curData - pred3D; |
---|
| 6694 | itvNum = fabs(diff)/realPrecision + 1; |
---|
| 6695 | if (itvNum < intvCapacity_sz){ |
---|
| 6696 | if (diff < 0) itvNum = -itvNum; |
---|
| 6697 | type[index] = (int) (itvNum/2) + intvRadius; |
---|
| 6698 | *cur_data_pos = pred3D + 2 * (type[index] - intvRadius) * tmp_realPrecision; |
---|
| 6699 | //ganrantee comporession error against the case of machine-epsilon |
---|
| 6700 | if(fabs(curData - *cur_data_pos)>tmp_realPrecision){ |
---|
| 6701 | type[index] = 0; |
---|
| 6702 | *cur_data_pos = curData; |
---|
| 6703 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 6704 | } |
---|
| 6705 | } |
---|
| 6706 | else{ |
---|
| 6707 | type[index] = 0; |
---|
| 6708 | *cur_data_pos = curData; |
---|
| 6709 | unpredictable_data[unpredictable_count ++] = curData; |
---|
| 6710 | } |
---|
| 6711 | index ++; |
---|
| 6712 | cur_data_pos ++; |
---|
| 6713 | } |
---|
| 6714 | cur_data_pos ++; |
---|
| 6715 | } |
---|
| 6716 | cur_data_pos += pred_buffer_block_size; |
---|
| 6717 | } |
---|
| 6718 | total_unpred += unpredictable_count; |
---|
| 6719 | unpredictable_data += unpredictable_count; |
---|
| 6720 | // change indicator |
---|
| 6721 | indicator_pos[k] = 1; |
---|
| 6722 | }// end SZ |
---|
| 6723 | reg_params_pos ++; |
---|
| 6724 | type += block_size * block_size * block_size; |
---|
| 6725 | } |
---|
| 6726 | indicator_pos += num_z; |
---|
| 6727 | } |
---|
| 6728 | } |
---|
| 6729 | } |
---|
| 6730 | free(pred_buffer); |
---|
| 6731 | int stateNum = 2*quantization_intervals; |
---|
| 6732 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
| 6733 | |
---|
| 6734 | size_t nodeCount = 0; |
---|
| 6735 | init(huffmanTree, result_type, num_blocks*max_num_block_elements); |
---|
| 6736 | size_t i = 0; |
---|
| 6737 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
| 6738 | if (huffmanTree->code[i]) nodeCount++; |
---|
| 6739 | nodeCount = nodeCount*2-1; |
---|
| 6740 | |
---|
| 6741 | unsigned char *treeBytes; |
---|
| 6742 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
| 6743 | |
---|
| 6744 | unsigned int meta_data_offset = 3 + 1 + MetaDataByteLength; |
---|
| 6745 | // total size metadata # elements real precision intervals nodeCount huffman block index unpredicatable count mean unpred size elements |
---|
| 6746 | unsigned char * result = (unsigned char *) calloc(meta_data_offset + exe_params->SZ_SIZE_TYPE + sizeof(double) + sizeof(int) + sizeof(int) + treeByteSize + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(unsigned short) + num_blocks * sizeof(float) + total_unpred * sizeof(float) + num_elements * sizeof(int), 1); |
---|
| 6747 | unsigned char * result_pos = result; |
---|
| 6748 | initRandomAccessBytes(result_pos); |
---|
| 6749 | |
---|
| 6750 | result_pos += meta_data_offset; |
---|
| 6751 | |
---|
| 6752 | sizeToBytes(result_pos,num_elements); //SZ_SIZE_TYPE: 4 or 8 |
---|
| 6753 | result_pos += exe_params->SZ_SIZE_TYPE; |
---|
| 6754 | |
---|
| 6755 | intToBytes_bigEndian(result_pos, block_size); |
---|
| 6756 | result_pos += sizeof(int); |
---|
| 6757 | doubleToBytes(result_pos, realPrecision); |
---|
| 6758 | result_pos += sizeof(double); |
---|
| 6759 | intToBytes_bigEndian(result_pos, quantization_intervals); |
---|
| 6760 | result_pos += sizeof(int); |
---|
| 6761 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
| 6762 | result_pos += sizeof(int); |
---|
| 6763 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
| 6764 | result_pos += sizeof(int); |
---|
| 6765 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
| 6766 | result_pos += treeByteSize; |
---|
| 6767 | free(treeBytes); |
---|
| 6768 | |
---|
| 6769 | memcpy(result_pos, &use_mean, sizeof(unsigned char)); |
---|
| 6770 | result_pos += sizeof(unsigned char); |
---|
| 6771 | memcpy(result_pos, &mean, sizeof(float)); |
---|
| 6772 | result_pos += sizeof(float); |
---|
| 6773 | size_t indicator_size = convertIntArray2ByteArray_fast_1b_to_result(indicator, num_blocks, result_pos); |
---|
| 6774 | result_pos += indicator_size; |
---|
| 6775 | |
---|
| 6776 | //convert the lead/mid/resi to byte stream |
---|
| 6777 | if(reg_count > 0){ |
---|
| 6778 | for(int e=0; e<4; e++){ |
---|
| 6779 | int stateNum = 2*coeff_intvCapacity_sz; |
---|
| 6780 | HuffmanTree* huffmanTree = createHuffmanTree(stateNum); |
---|
| 6781 | size_t nodeCount = 0; |
---|
| 6782 | init(huffmanTree, coeff_type[e], reg_count); |
---|
| 6783 | size_t i = 0; |
---|
| 6784 | for (i = 0; i < huffmanTree->stateNum; i++) |
---|
| 6785 | if (huffmanTree->code[i]) nodeCount++; |
---|
| 6786 | nodeCount = nodeCount*2-1; |
---|
| 6787 | unsigned char *treeBytes; |
---|
| 6788 | unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree, nodeCount, &treeBytes); |
---|
| 6789 | doubleToBytes(result_pos, precision[e]); |
---|
| 6790 | result_pos += sizeof(double); |
---|
| 6791 | intToBytes_bigEndian(result_pos, coeff_intvRadius); |
---|
| 6792 | result_pos += sizeof(int); |
---|
| 6793 | intToBytes_bigEndian(result_pos, treeByteSize); |
---|
| 6794 | result_pos += sizeof(int); |
---|
| 6795 | intToBytes_bigEndian(result_pos, nodeCount); |
---|
| 6796 | result_pos += sizeof(int); |
---|
| 6797 | memcpy(result_pos, treeBytes, treeByteSize); |
---|
| 6798 | result_pos += treeByteSize; |
---|
| 6799 | free(treeBytes); |
---|
| 6800 | size_t typeArray_size = 0; |
---|
| 6801 | encode(huffmanTree, coeff_type[e], reg_count, result_pos + sizeof(size_t), &typeArray_size); |
---|
| 6802 | sizeToBytes(result_pos, typeArray_size); |
---|
| 6803 | result_pos += sizeof(size_t) + typeArray_size; |
---|
| 6804 | intToBytes_bigEndian(result_pos, coeff_unpredictable_count[e]); |
---|
| 6805 | result_pos += sizeof(int); |
---|
| 6806 | memcpy(result_pos, coeff_unpred_data[e], coeff_unpredictable_count[e]*sizeof(float)); |
---|
| 6807 | result_pos += coeff_unpredictable_count[e]*sizeof(float); |
---|
| 6808 | SZ_ReleaseHuffman(huffmanTree); |
---|
| 6809 | } |
---|
| 6810 | } |
---|
| 6811 | free(coeff_result_type); |
---|
| 6812 | free(coeff_unpredictable_data); |
---|
| 6813 | |
---|
| 6814 | //record the number of unpredictable data and also store them |
---|
| 6815 | memcpy(result_pos, &total_unpred, sizeof(size_t)); |
---|
| 6816 | result_pos += sizeof(size_t); |
---|
| 6817 | memcpy(result_pos, result_unpredictable_data, total_unpred * sizeof(float)); |
---|
| 6818 | result_pos += total_unpred * sizeof(float); |
---|
| 6819 | size_t typeArray_size = 0; |
---|
| 6820 | encode(huffmanTree, result_type, num_blocks*max_num_block_elements, result_pos, &typeArray_size); |
---|
| 6821 | result_pos += typeArray_size; |
---|
| 6822 | size_t totalEncodeSize = result_pos - result; |
---|
| 6823 | free(indicator); |
---|
| 6824 | free(result_unpredictable_data); |
---|
| 6825 | free(result_type); |
---|
| 6826 | free(reg_params); |
---|
| 6827 | |
---|
| 6828 | |
---|
| 6829 | SZ_ReleaseHuffman(huffmanTree); |
---|
| 6830 | *comp_size = totalEncodeSize; |
---|
| 6831 | return result; |
---|
| 6832 | } |
---|